MU scientist eyeing enzymes that could help fight flu

As health care professionals prepare for another flu season, a University of Missouri scientist is studying how two enzymes could be used to stop the virus in its tracks. Bumsuk Hahm, Ph.D., and his colleagues at MU have received a $1.8 million grant from the National Institutes of Health to examine how the enzymes influence the immune system's ability to fight infection, including the flu virus. Credit: University of Missouri School of Medicine

The influenza virus remains a worldwide threat to humans, causing an average of 36,000 deaths and 200,000 hospitalizations each year in the United States alone. As health care professionals prepare for another flu season, a University of Missouri scientist is studying how two enzymes could be used to stop the virus in its tracks.

Bumsuk Hahm, PhD, and his colleagues at MU have received a $1.8 million grant from the National Institutes of Health to examine how the enzymes influence the immune system's ability to fight infection. Called sphingosine 1-phosphate lyase (SPL) and sphingosine kinase 1 (SK1), they are among a group of metabolizing enzymes that affect many cellular processes, including cell growth, survival, movement and specialization.

"We know these enzymes influence multiple and could lead to promising drug candidates, but scientists have never studied how these enzymes could be used to fight influenza," said Hahm, an assistant professor of surgery, and immunology. "There are a lot of seasonal that are resistant to current treatments, including some strains could cause a , so it's important that we identify and develop new targets for the treatment of influenza."

In a study published in the Journal of Virology, Hahm's research revealed that the enzymes affect the immune system's ability to detect viruses and resist infection. The new NIH grant will allow him to translate his study from cells to mice, an important step toward the development of a new treatment for humans.

"We found that when we alter the enzymes, the SPL enzyme stops the flu virus' ability to replicate, while the SK1 enzyme helps the virus to replicate," Hahm said. "If we can specifically activate SPL or inhibit SK1, we can identify a target for drug therapies that will block the spread of the ."

In November 2011, the MU School of Medicine presented Hahm with its most prestigious award for scientists, the Dorsett L. Spurgeon Distinguished Medical Research Award. Hahm received his doctorate in molecular virology from Pohang University of Science and Technology in South Korea and then joined the virology division at the Scripps Research Institute in La Jolla, Calif. At Scripps, Dr. Hahm studied viral immunology and viral pathogenesis before joining the MU School of Medicine as a faculty member in 2008.

add to favorites email to friend print save as pdf

Related Stories

Why do some influenza virus subtypes die out?

Nov 14, 2011

Every so often we hear about a new strain of influenza virus which has appeared and in some cases may sweep across the globe in a pandemic, much as the H1N1 virus did last year. What happens to the old seasonal viruses? In ...

Bird flu leaves the nest -- adapting to a new host

Aug 26, 2009

Current research suggests that viral polymerase may provide a new therapeutic target for host-adapted avian influenza. The related report by Gabriel et al, "Spread of Infection and Lymphocyte Depletion in Mice Depends on ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

3 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

14 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

15 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

User comments