MU scientist eyeing enzymes that could help fight flu

November 17, 2011
As health care professionals prepare for another flu season, a University of Missouri scientist is studying how two enzymes could be used to stop the virus in its tracks. Bumsuk Hahm, Ph.D., and his colleagues at MU have received a $1.8 million grant from the National Institutes of Health to examine how the enzymes influence the immune system's ability to fight infection, including the flu virus. Credit: University of Missouri School of Medicine

The influenza virus remains a worldwide threat to humans, causing an average of 36,000 deaths and 200,000 hospitalizations each year in the United States alone. As health care professionals prepare for another flu season, a University of Missouri scientist is studying how two enzymes could be used to stop the virus in its tracks.

Bumsuk Hahm, PhD, and his colleagues at MU have received a $1.8 million grant from the National Institutes of Health to examine how the enzymes influence the immune system's ability to fight infection. Called sphingosine 1-phosphate lyase (SPL) and sphingosine kinase 1 (SK1), they are among a group of metabolizing enzymes that affect many cellular processes, including cell growth, survival, movement and specialization.

"We know these enzymes influence multiple and could lead to promising drug candidates, but scientists have never studied how these enzymes could be used to fight influenza," said Hahm, an assistant professor of surgery, and immunology. "There are a lot of seasonal that are resistant to current treatments, including some strains could cause a , so it's important that we identify and develop new targets for the treatment of influenza."

In a study published in the Journal of Virology, Hahm's research revealed that the enzymes affect the immune system's ability to detect viruses and resist infection. The new NIH grant will allow him to translate his study from cells to mice, an important step toward the development of a new treatment for humans.

"We found that when we alter the enzymes, the SPL enzyme stops the flu virus' ability to replicate, while the SK1 enzyme helps the virus to replicate," Hahm said. "If we can specifically activate SPL or inhibit SK1, we can identify a target for drug therapies that will block the spread of the ."

In November 2011, the MU School of Medicine presented Hahm with its most prestigious award for scientists, the Dorsett L. Spurgeon Distinguished Medical Research Award. Hahm received his doctorate in molecular virology from Pohang University of Science and Technology in South Korea and then joined the virology division at the Scripps Research Institute in La Jolla, Calif. At Scripps, Dr. Hahm studied viral immunology and viral pathogenesis before joining the MU School of Medicine as a faculty member in 2008.

Explore further: FDA approves 2006 strain of flu vaccine

Related Stories

Bird flu leaves the nest -- adapting to a new host

August 26, 2009

Current research suggests that viral polymerase may provide a new therapeutic target for host-adapted avian influenza. The related report by Gabriel et al, "Spread of Infection and Lymphocyte Depletion in Mice Depends on ...

Why do some influenza virus subtypes die out?

November 14, 2011

Every so often we hear about a new strain of influenza virus which has appeared and in some cases may sweep across the globe in a pandemic, much as the H1N1 virus did last year. What happens to the old seasonal viruses? In ...

Recommended for you

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.