New insights into how the brain reconstructs the third dimension

This is a new illusion in which random noise (left) is made to look like a 3-D shape (right). Credit: MPI for Biological Cybernetics

A new visual illusion has shed light on a long-standing mystery about how the brain works out the 3-D shapes of objects.

As dizzying as it may sound, the impression that we are living in a 3D world is actually a continuous fabrication of our brains. When we look at things, the world gets projected onto the and information about the is lost — a bit like when a 3D object casts a shadow onto a flat, 2D wall. Somehow the is able to reconstruct the third dimension from the image, allowing us to experience a convincing 3D world. A team of scientists from Giessen University, Yale and the Max Planck Institute for Biological Cybernetics in Tübingen has recently discovered how in visual cortex might help solve this mystery. They created special 2D patterns designed to stimulate specific nerve cells when we look at them. They find that the result is a vivid illusion of 3D shape, which suggests these cells play an important role in reconstructing 3D shape.

"We created the images by taking random noise and smearing it out across the image in specific patterns. It's a bit like finger painting, except it's done by computer", explains Roland Fleming, Professor of Psychology at the University of Giessen. "The way the texture gets smeared out is not the way texture behaves in the real 3D world. But it allows us to selectively stimulate so-called 'complex cells' in visual cortex, which measure the local 2D orientation of patterns in the retinal image".

These cells — whose discovery led to a Nobel Prize for David Hubel and Torsten Wiesel – are often described as 'edge detectors' because they respond to boundaries or edges in the image. What was not known was that these cells could play a key role in estimating 3D shape.

"We asked people to adjust small probes to report what they saw. The settings allow us to reconstruct exactly which 3D shapes they perceived," says Heinrich Bülthoff, director of the department of Human Perception, Cognition and Action at the Max Planck Institute for Biological Cybernetics. "What's striking is how close the results are to predictions of a model based on cell responses".

The authors suggest the strongest evidence implicating the cells comes from an experiment in which participants stared at patterns for 30 seconds at a time, to change the way the cells respond. The resulting 'adaptation' causes random noise—which normally looks completely flat—to appear like a specific 3D shape.

"It's a kind of aftereffect, a bit like when you stare at a waterfall for a while, adaptation makes things that are stationary look like they are moving in the opposite direction. Except here, the aftereffect makes the noise look 3D," says Daniel Holtmann-Rice, who is currently doing his PhD at Yale University. "We didn't think it was going to work. It was so exciting to get the first data where we could clearly see the predicted shapes emerging in the participants' settings."

The authors are currently working on generalizing the findings to other kinds of information about 3D shape, such as shading and highlights.

More information: Fleming, RW, Holtmann-Rice D & HH Bülthoff Estimation of 3D shape from image orientations. PNAS, published ahead of print December 6, 2011, doi:10.1073/pnas.1114619109

Related Stories

3-D brain centers pinpointed

Aug 01, 2007

In studies with monkeys, researchers have identified in detail the brain regions responsible for the unique ability of primates, including humans, to process visual 3D shapes to guide their sophisticated manipulation of objects.

World's Highest Resolution 3D Images

Aug 31, 2004

NEC Corporation today announced that it has succeeded in the development of a novel 3D system-on-glass ("SOG") liquid crystal display ("LCD") that can display the world's highest resolution 3D images. NEC's original Horizontally Double-Density Pi ...

Recommended for you

New viral tools for mapping brains

3 hours ago

(Medical Xpress)—A brain-computer-interphase that is optogenetically-enabled is one of the most fantastic technologies we might envision today. It is likely that its full power could only be realized under ...

Link seen between seizures and migraines in the brain

18 hours ago

Seizures and migraines have always been considered separate physiological events in the brain, but now a team of engineers and neuroscientists looking at the brain from a physics viewpoint discovered a link ...

Neuroscience: Why scratching makes you itch more

Oct 30, 2014

Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.