Antibodies to intracellular cancer antigens combined with chemotherapy enhance anti-cancer immunity

An international team of scientists in Japan, Switzerland, and the United States has confirmed that combining chemotherapy and immunotherapy in cancer treatment enhances the immune system's ability to find and eliminate cancer cells, even when the cancer-associated proteins targeted by the immune system are hidden behind the cancer cell membrane. In a study published in Cancer Research by Noguchi et al., the scientists show that antibodies, which have been successful in treating certain types of cancers, can effectively reach elusive intracellular targets, delaying tumor growth and prolonging survival when combined with chemotherapy.

"The study provides proof-of-principle for a powerful new strategy that may greatly expand the arsenal of potential targets for and that could be broadly applicable to many different ," said Hiroyoshi Nishikawa, M.D., Ph.D., a Cancer Research Institute (CRI)-funded associate professor in the Department of at the Immunology Frontier Research Center, Osaka University, and a senior author on the paper.

The introduction of antibodies against cancer represents one of the biggest successes of over the past 20 years. These treatments work by targeting markers on the surface of cancer cells, and include the blockbuster therapies Herceptin, which targets the HER2/neu marker on , and Rituxan, which targets the CD20 marker on .

The majority of markers that can distinguish cancer cells from normal cells, however, are found exclusively inside cancer cells, where antibodies typically cannot access them. "Therapies that can successfully target cancer antigens found within cancer cells may be able to fight cancer without causing unwanted side effects due to collateral damage to healthy cells," said study co-lead author Gerd Ritter, Ph.D., associate director of the New York Branch of the Ludwig Institute for Cancer Research (LICR), and a leading member of the CRI/ Cancer Vaccine Collaborative, which also supported the study.

To assess whether antibody treatment against an intracellular antigen might be successful, the researchers used an antibody against the prototypic cancer antigen NY-ESO-1 and tested it in a model of colon cancer engineered to express NY-ESO-1 within its cancer cells. Alone, the antibody had no effect against the cancer. By using chemotherapy to release NY-ESO-1 from the cancer cells prior to the administration of the antibody, however, they were able to significantly delay cancer progression and prolong survival. The researchers then tested the strategy in another cancer model using a different type of chemotherapy and showed similar results, demonstrating that this approach could be applicable to different tumor types using various standard chemotherapies.

By monitoring the immune responses to these treatments, the researchers on the study found that the anti-tumor effect of the combination was dependent on CD8+, or killer, T cells. Rather than working to kill the directly, the antibody worked by binding to the NY-ESO-1 antigen and facilitating its presentation to CD8+ T cells, which then exerted the anti-tumor effects. These findings not only have implications for how scientists understand the mechanisms of current antibody treatments for cancer, but they also shed light on a fundamental question in clinical immunology, which asks how people develop spontaneous antibody and/or CD8+ T cell responses against NY-ESO-1.

"These studies are also representative of a growing trend in immunotherapy treatment, namely the use of chemotherapy and other standard therapies to augment anti-tumor immunity," stated Hiroshi Shiku, M.D., chairman and professor in the Department of Medical Oncology and Immunology, Mie University Graduate School of Medicine, Japan, and a lead investigator on the study. Until very recently, it was thought that these treatments served to uniformly dampen the immune system and would therefore limit the potential efficacy of immunotherapies used in tandem or in sequence. A growing body of literature, however, is suggesting that certain cytotoxic, or "cell-killing," therapies such as chemotherapy and radiation, used in strategic ways, can synergize with immunotherapies to strengthen or expand the anti-tumor immune response.

Based on the success of their preclinical investigations, the study researchers are eager to take the approach into clinical testing. Such a trial would bridge what immunologists refer to as passive immunotherapy and active immunotherapy.

"It's passive because we're using antibodies manufactured outside the body—the body doesn't have to do the work to make these antibodies; but it's also active because these antibodies then mobilize the immune system to actively begin producing potent cells and endogenous molecules like cytokines and complement to attack the tumor. It's a powerful strategy that for the first time capitalizes on the full therapeutic potential of antibodies as mediators of tumor elimination," Ritter said.

More information: Noguchi et al. Intracellular tumor-associated antigens represent effective targets for passive immunotherapy. Cancer Res. canres.3072.2011 ; Published OnlineFirst February 8, 2012

Provided by Ludwig Institute for Cancer Research

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Stem cells, potential source of cancer-fighting T cells

Sep 20, 2011

Adult stem cells from mice converted to antigen-specific T cells -- the immune cells that fight cancer tumor cells -- show promise in cancer immunotherapy and may lead to a simpler, more efficient way to use the body's immune ...

Enhancing the effectiveness of a breast cancer treatment

Feb 13, 2012

Breast cancers expressing the protein HER2 have a particularly poor prognosis. Treatment with trastuzumab (Herceptin) benefits some patients with HER2-positive breast cancer, but it is not as effective as had been hoped. ...

Recommended for you

Putting the brakes on cancer

1 hour ago

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

2 hours ago

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.