Cell study may aid bid for motor neurone therapies

The quest for treatments for motor neurone disease, spinal cord injury and strokes could be helped by new research that shows how key cells are produced.

Scientists at the University of Edinburgh have been able to manipulate the production of motor neurones – which control all muscle activity – in zebrafish.

Zebrafish are important in helping scientists understand how motor neurones are produced, because unlike mammals, they are able to create new motor neurones as adults.

Humans can generate motor neurones during embryonic development but lose the ability to generate these cells, which are important for speaking, walking and breathing, after birth.

This means that the body is unable to replace these cells if they become damaged as a result of , or injury.

The study, published in the Journal of Neuroscience, found that motor neurone production could be increased in adult zebrafish with a drug that inhibits the so-called notch-signalling pathway.

Dr Catherina Becker, from the University of Edinburgh's Centre for Neuroregeneration, said: "If we can find out more about the cell mechanisms involved in zebrafish to make motor neurones, we could potentially manipulate these pathways in humans with the hope of being able to generate new motor neurones."

The research focussed on early stage cells – known as progenitor cells – in zebrafish, which have the ability to generate motor neurones.

Scientists found that when a protein – called Notch 1¬ – was expressed, signals were sent that stopped the progenitor cells from making motor neurones.

Stopping the Notch1 protein from sending these signals meant that researchers were able to increase the production of progenitor cells and motor neurones in the zebrafish.

Humans have progenitor cells, very similar to those found in zebrafish, which are located in the central nervous system. However, after embryonic development, these cells lose the ability to become motor neurones in humans.

The study could help research to find ways to turn progenitor into following damage caused by motor neuron disease, spinal cord injury or stroke.

Related Stories

Researchers shake up scientific theory on motor protein

date Feb 05, 2009

(PhysOrg.com) -- An international team of scientists led by the University of Leeds has shed new light on the little-understood motor protein called dynein, thought to be involved in progressive neurological ...

Recommended for you

Living life in the third person

date 11 hours ago

Imagine living a healthy, normal life without the ability to re-experience in your mind personal events from your past. You have learned details about past episodes from your life and can recite these to ...

Guideline advises when to treat a first seizure

date 12 hours ago

A new guideline released today by the American Academy of Neurology (AAN) and the American Epilepsy Society (AES) found that administering an antiepileptic medication immediately after a first seizure reduces the risk of ...

Brain: A 'cingular' strategy for attack and defense

date 17 hours ago

Researchers at the RIKEN Brain Science Institute in Japan have pinpointed specific brain regions related to choosing strategies, specifically deciding to attack an opponent or defend one's position.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.