Circadian rhythms have profound influence on metabolic output, study reveals

March 19, 2012

By analyzing the hundreds of metabolic products present in the liver, researchers with the UC Irvine Center for Epigenetics & Metabolism have discovered that circadian rhythms – our own body clock – greatly control the production of such key building blocks as amino acids, carbohydrates and lipids.

They identified more than 600 liver-originated , which are the chemical substances created by metabolism that sustain and promote cell health and growth. Approximately 60 percent of these metabolites were found to be dependent on the endogenous circadian clock – many more than expected, as only about 15 percent of the body's genes are regulated by it.

over 24 hours govern fundamental biological and physiological processes in almost all organisms. They anticipate environmental changes and adapt certain bodily functions to the appropriate time of day. Disruption of these cycles can seriously affect human health.

Center for Epigenetics & Metabolism director Paolo Sassone-Corsi, lead author on the study and one of the world's preeminent researchers on circadian rhythms, said the liver metabolites reveal how the body clock – through the main circadian gene, CLOCK – orchestrates the interplay between metabolites and signaling proteins in much the same way a conductor leads a symphony.

"Metabolites and signaling proteins – like the horns and strings in an orchestra – need to be perfectly coordinated, and we've found that CLOCK provides that direction," he said.

Since external cues such as day-night lighting patterns and nutrition influence the circadian machinery, metabolites and their relationship to in cells seem to be acutely tied to circadian disruptions. This may help explain, Sassone-Corsi added, some of the primary physiological factors underlying obesity, high cholesterol and metabolic-based diseases like diabetes.

"This interplay has far-reaching implications for human illness and aging, and it is likely vital for proper metabolism," he said. Study results appear this week in the early online edition of the Proceedings of the National Academy of Sciences.

"By identifying the relationship between metabolites and the , we have taken a first step toward a better understanding of how nutrients interact with our metabolism, giving researchers a new opportunity to spot the optimal times for us to get the fullest benefits from the foods we eat and the medications we take," added Kristin Eckel-Mahan, a UCI postdoctoral researcher in biological chemistry and study co-author.

Working with Metabolon Inc., Sassone-Corsi and Eckel-Mahan created the first liver metabolome – the full set of metabolites. With this information, they partnered with Pierre Baldi, director of UCI's Institute for Genomics & Bioinformatics, and his graduate student Vishal Patel to analyze the data and build CircadiOmics, a Web-based data system that provides detailed profiles of the metabolites and related genes in the liver and the underlying networks through which they interact. The CircadiOmics address is http://circadiomics.igb.uci.edu.

"Within CircadiOmics, we were able to integrate this circadian metabolite data with multiple other data sources to generate the first comprehensive map of the metabolome and its circadian oscillations and develop regulatory hypotheses that have been confirmed in the laboratory," said Baldi, Chancellor's Professor of computer science. "CircadiOmics is being expanded with metabolic data about other tissues and conditions and will be invaluable to further our understanding of the interplay between metabolism and circadian rhythms in healthy and diseased states."

Explore further: Circadian rhythm-metabolism link discovered

Related Stories

Circadian rhythm-metabolism link discovered

July 24, 2008

UC Irvine researchers have found a molecular link between circadian rhythms – our own body clock – and metabolism. The discovery reveals new possibilities for the treatment of diabetes, obesity and other related diseases.

Body clock regulates metabolism

March 12, 2009

(PhysOrg.com) -- UC Irvine researchers have discovered that circadian rhythms - our own body clock - regulate energy levels in cells. The findings have far-reaching implications, from providing greater insights into the bond ...

Internal body clock controls fat metabolism, study shows

November 15, 2010

UC Irvine researchers have discovered that circadian rhythms – the internal body clock – regulate fat metabolism. This helps explain why people burn fat more efficiently at certain times of day and could lead to ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.