Radiotherapy doses to be more accurate

April 13, 2012
Radiotherapy can treat a range of cancers such as breast, head, neck, prostate, and lung. Credit: iStockphoto

Cancer patients undergoing radiotherapy treatments in future will be safer thanks to a collaborative piece of research by NPL, the University of Montreal, and McGill University which will result in improved measurement consistency.

Radiotherapy treats cancer by focusing beams of ionising on a , which kills by damaging their . For treatment to be effective, the delivery of radiation needs to be very tightly controlled – too much dose could damage surrounding healthy tissue, too little may cause the tumour to grow again.

As measurement experts, NPL is very active in the field of dosimetry, and has published the results of a collaborative project (On charged particle equilibrium violation in external photon fields) in the journal Medical Physics, which was selected to be highlighted by the journal's editor.

In this paper, NPL and collaborators at Canada's McGill University and the University of Montreal report a misconception on how charged particles (ionising electrons) are distributed locally whilst delivering a uniform dose to a tumour using a special form of radiotherapy called 'intensity modulated radiotherapy' (IMRT).

Identifying this misconception allows for much improved correction factor calculations for ionisation chambers and other detectors used in IMRT, and therefore will safeguard who receive this form of treatment in future.

Dr Hugo Palmans, a principal research scientist in NPL's Acoustics & Ionising Radiation Division, said:

"This work will impact a range of radiotherapy treatment options, such as TomoTherapy, CyberKnife, and volumetric arc therapy – as we now have a better understanding of how the complex fields of charged particles produced by these therapies are distributed. Medical physicists can now calculate improved values of correction factors for their IMRT detectors which will greatly improve their safety and effectiveness."

NPL's involvement in this research was funded by the National Measurement System, and is part of a much larger multi-disciplinary effort to make radiotherapy safer than ever.

Explore further: Sensors, a smart dose of medicine for cancer treatment

More information: Read the full paper: On charged particle equilibrium violation in external photon fields, Med. Phys. 39, 1473 (2012)

Related Stories

Sensors, a smart dose of medicine for cancer treatment

November 2, 2005

New sensor systems being developed will help treat cancer and improve the accuracy and reliability of existing radiation treatments. They should help improve patient care and outcomes. The results will go straight to commercialisation ...

NPL unveils new equipment to make cancer treatment safer

November 14, 2008

A new piece of medical technology unveiled at the National Physical Laboratory (NPL) today will help improve the success rates of radiotherapy cancer treatments. The new clinical electron linear accelerator (linac) will help ...

Project to improve radiotherapy planning

January 30, 2012

A collaborative project between physicists, oncologists and computer scientists at Oxford and Cambridge Universities, launched last month, will develop improved tools for the planning of high precision radiotherapy. Accel-RT ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.