Researchers prevent mice from developing diabetes

June 29, 2012
Researchers prevent mice from developing diabetes
Macrophages. Copyright: Roham Parsa

(Medical Xpress) -- Swedish research group headed at Karolinska Institutet has been able to prevent onset of Type 1 diabetes in mice that are genetically susceptible to the disease. Through injection of specifically prepared cells, the researchers managed to stop the ongoing destruction of insulin-producing pancreatic beta cells in mice just prior to clinical debut of diabetes.

Type 1 is an autoimmune disease in which the immune system begins to attack and destroy the insulin-producing . This leads to a deficiency in production of insulin, which individuals with Type 1 diabetes thereafter have to inject. The initial cause of this autoimmune destruction is currently not known.

However, it is known that , a particular type of immune cells, have an active role in the destruction of in Type 1 diabetes. Yet macrophages can also exhibit the opposite properties; earlier studies have demonstrated that macrophages can protect against inflammation-mediated tissue damage.

utilise signal molecules termed cytokines in order to communicate with each other, giving instructions as to how the cells should act. In the current article, published in the scientific journal Diabetes, the researchers aimed to determine which cytokines were necessary to instruct macrophages to become protective cells.

"We managed to achieve this aim, defining a novel combination of cytokines that confer on macrophages the ability to protect mice from developing Type 1 diabetes", says Robert Harris, lead researcher at the Department of Clinical Neuroscience and based at the Centre for , Karolinska Institutet. "It has never previously been reported, that such an adoptive transfer cell therapy can be used in Type 1 diabetes and this study could thus represent a major advance towards disease prevention"

The researchers used so-called NOD mice which are genetically susceptible to developing Type 1 diabetes spontaneously between 12-30 weeks of age. The researchers grew macrophages from bone marrow progenitors from these mice. The mature macrophages were then stimulated with the defined combination of cytokines. When NOD mice were 16 weeks old separate groups were treated with either cytokine-stimulated macrophages, untreated macrophages of were not treated.

The mice were monitored for a further 12 weeks post-treatment. Using a specific three-dimensional imaging technique developed at Umeå University, Sweden, the degree of immune-mediated attack of the beta cells could be visualized in each treatment group. At the end of the follow-up period only 25% of the mice receiving the cytokine-treated macrophages had developed Type 1 diabetes, while 83% of the control groups had become sick.

"The cell therapy was initiated just 2 weeks before mice developed clinical diabetes", says Dr Harris. "At this stage few insulin-producing beta cells remain in the pancreas, yet we were able to protect these so that the mice never developed diabetes. Such a successful late-stage intervention has never previously been reported and is a significant result of our study. At the time of their clinical diagnosis, most human individuals have already lost most of their insulin-producing beta cells."

Explore further: Gene therapy reverses type 1 diabetes in mice

Related Stories

Gene therapy reverses type 1 diabetes in mice

June 6, 2011

An experimental cure for Type 1 diabetes has a nearly 80 percent success rate in curing diabetic mice. The results, to be presented Saturday at The Endocrine Society's 93rd Annual Meeting in Boston, offer possible hope of ...

Scientists use uterine stem cells to treat diabetes

September 14, 2011

Controlling diabetes may someday involve mining stem cells from the lining of the uterus, Yale School of Medicine researchers report in a new study published in the journal Molecular Therapy. The team treated diabetes in ...

Recommended for you

Do germs cause type 1 diabetes?

May 16, 2016

Germs could play a role in the development of type 1 diabetes by triggering the body's immune system to destroy the cells that produce insulin, new research suggests.

Melatonin signaling is a risk factor for type 2 diabetes

May 12, 2016

A sleeping pancreas releases less insulin, but how much insulin drops each night may differ from person to person, suggests a study published May 12, 2016 in Cell Metabolism. Up to 30 percent of the population may be predisposed ...

New gene for familial high cholesterol

May 12, 2016

New research from Denmark reveals the gene that explains one quarter of all familial hypercholesterolemia with very high blood cholesterol. Familial hypercholesterolemia is the most common genetic disorder leading to premature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.