The brains of people with schizophrenia may attempt to heal from the disease

(Medical Xpress) -- New NeuRA research shows that the brains of people with schizophrenia may attempt to repair damage caused by the disease, in another example of the adult brain’s capacity to change and grow.

Prof. Cyndi Shannon Weickert, Dr. Dipesh Joshi and colleagues from Neuroscience Research Australia studied the brains of people with and focussed on one of the hardest-hit regions, the orbitofrontal cortex, which is the part of the brain involved in regulating emotional and social behaviour.

Most neurons – brain cells that transmit information – are found in tissue near the surface of the brain. However, in the brains of people with schizophrenia, the team found a high density of neurons in deeper areas.

“For over a decade we’ve known about the high density of neurons in deeper brain tissue in people with schizophrenia. Researchers thought these neurons were simply forgotten by the brain, and somehow didn’t die off like they do during development in healthy people,” says Prof. Shannon Weickert.

“What we now have is evidence that suggests these neurons are derived from the part of the brain that produces new neurons, and that they may be in the process of moving. We can’t be sure where they are moving to, but given their location it is likely they are on their way to the surface of the brain, the area most affected by schizophrenia,” Prof. Shannon Weickert concluded.

How was this study done?

  • tissue from the orbitofrontal cortex from 38 people with schizophrenia and 38 people without the disease were used in this study.
  • The density of interstitial neurons in the , and the density of GABAergic neurons in the grey matter were measured.
  • An increased density of interstitial white matter neurons in the white matter, and decreased density of GABAergic neurons in the grey matter was found.
  • This pattern suggests that the migration of interstitial white matter towards an area where they are lacking, because of schizophrenia, is a response to the disease.

add to favorites email to friend print save as pdf

Related Stories

Neuronal migration errors: Right cells, wrong place

Jan 04, 2011

Normally, cortical nerve cells or neurons reside in the brain's gray matter with only a few scattered neurons in the white matter, but some people with schizophrenia have a higher number of neurons in the white matter. Neuronal ...

Immune molecule regulates brain connections

Feb 27, 2011

The number of connections between nerve cells in the brain can be regulated by an immune system molecule, according to a new study from UC Davis. The research, published Feb. 27 in the journal Nature Neuroscience, reveal ...

In schizophrenia research, a path to the brain through the nose

Jan 25, 2012

A significant obstacle to progress in understanding psychiatric disorders is the difficulty in obtaining living brain tissue for study so that disease processes can be studied directly. Recent advances in basic cellular neuroscience ...

Recommended for you

New viral tools for mapping brains

12 hours ago

(Medical Xpress)—A brain-computer-interphase that is optogenetically-enabled is one of the most fantastic technologies we might envision today. It is likely that its full power could only be realized under ...

Link seen between seizures and migraines in the brain

Oct 30, 2014

Seizures and migraines have always been considered separate physiological events in the brain, but now a team of engineers and neuroscientists looking at the brain from a physics viewpoint discovered a link ...

Neuroscience: Why scratching makes you itch more

Oct 30, 2014

Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.