A drug-screening platform for ALS

August 2, 2012
This shows a control iPSC-derived motor neuron (left) and a motor neuron derived from ALS patient-specific iPSC (right). Credit: Haruhisa Inoue's Laboratory, CiRA, Kyoto University

A research group at the Center for iPS Cell Research and Application (CiRA) at Japan's Kyoto University has successfully recapitulated amyotrophic lateral sclerosis (ALS)-associated abnormalities in motor neurons differentiated from induced pluripotent stem cells (iPSCs) obtained from patients with familial ALS, a late-onset, fatal disorder which is also known for Lou Gehrig's disease. In a drug screening assay using the disease model, the team further found that the chemical compound anacardic acid can rescue some ALS phenotypes in vitro.

In a study published online in Science Translational Medicine, Associate Professor Haruhisa Inoue and his team generated motor neurons from iPSCs derived from three ALS patients with mutations in Tar DNA-binding protein-43 (TDP-43). The motor neurons showed cellular phenotypes including vulnerability to stress, shorter neurites, and cytosolic aggregates similar to those seen in postmortem tissues from ALS patients. The team also found that TDP-43 mRNA was upregulated in the ALS motor neurons, which means that TDP-43 autoregulation was disturbed, and that TDP-43 protein in detergent-insoluble form aggregated with the splicing factor SNRPB2 in the nucleus, perturbing RNA metabolism. These findings shed light on the mechanism of disease onset.

Using the motor neurons as a , the researchers discovered that the anacardic acid can rescue the abnormal ALS motor neuron phenotypes. For example, when anacardic acid, a histone acetyltransferase inhibitor, was sprinkled on the motor neurons, TDP-43 was decreased, and the length of the increased.

''Our work represents an initial stage of drug screening for ALS using patient-specific iPSCs. TDP-43 is not only relevant to familial ALS but also to sporadic ALS, which represents the majority of ALS cases,'' said Inoue, a principal investigator at CiRA who is also one of research directors for the CREST research program funded by the Japan Science and Technology Agency. ''We will continue to work on ALS patient-specific iPSCs in order to help develop new drug seeds and candidates.''

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

More information: Egawa et al. "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells" Science Translational Medicine.

Related Stories

OHSU discovery may lead to new treatment for ALS

July 18, 2012

Researchers at Oregon Health & Science University School of Dentistry have discovered that TDP-43, a protein strongly linked to ALS (Amyotrophic Lateral Sclerosis) and other neurodegenerative diseases, appears to activate ...

Stem cell model offers clues to cause of inherited ALS

June 21, 2011

An international team of scientists led by researchers at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis ...

Recommended for you

Formaldehyde damages proteins, not just DNA

September 29, 2016

The capacity of formaldehyde, a chemical frequently used in manufactured goods such as automotive parts and wood products, to damage DNA, interfere with cell replication and cause cancer inspired new federal regulations this ...

Synthetic 3D-printed material helps bones regrow

September 28, 2016

A cheap and easy to make synthetic bone material has been shown to stimulate new bone growth when implanted in the spines of rats and a monkey's skull, researchers said Wednesday.

Epigenetic clock predicts life expectancy

September 28, 2016

UCLA geneticist Steve Horvath led a team of 65 scientists in seven countries to record age-related changes to human DNA, calculate biological age and estimate a person's lifespan. A higher biological age—regardless of chronological ...

Engineered blood vessels grow in lambs

September 27, 2016

In a hopeful development for children born with congenital heart defects, scientists said Tuesday they had built artificial blood vessels which grew unaided when implanted into lambs, right into adulthood.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.