New drug successfully halts fibrosis in animal model of liver disease

August 7, 2012

A study published in the online journal Hepatology reports a potential new NADPH oxidase (NOX) inhibitor therapy for liver fibrosis, a scarring process associated with chronic liver disease that can lead to loss of liver function.

"While numerous studies have now demonstrated that advanced liver fibrosis in patients and in experimental rodent models is reversible, there is currently no for patients," said principal investigator David A. Brenner, MD, vice chancellor for and dean of the School of Medicine at the University of California, San Diego. "This new study provides important validation of the role of NOX in liver fibrosis, and suggests that a NOX inhibitor could provide an effective treatment for this devastating disease."

Most chronic liver diseases are associated with progressive fibrosis, which is triggered by the loss of and the activation of inadequate pathways. In addition, oxidative stress – which results from an inappropriate balance between the production and clearance of highly reactive molecules involved in cell signaling called reactive oxidative species (ROS) – leads to aberrant tissue repair in the liver.

When the liver is injured – for example, through hepatitis or alcohol abuse –HSCs are activated to become myofibroblasts, cells which play a crucial role in wound healing and the body's response to inflammation by recruiting immune cells called macrophages to the injury site. This process, triggered by intracellular signalling pathways involving NOX, can result in an abundance of scarring and eventually result in the loss of organ function.

By inhibiting NOX, the researchers theorized that myofibroblast activation and macrophage recruitment could be interrupted, preventing further fibrosis and potentially allowing regression of established fibrosis.

They assessed the effectiveness of treatment with GKT137831 – a NOX1/4 inhibitor developed by Genkyotex SA of Geneva, Switzerland – in mouse models, and found that treatment with this NOX inhibitor suppressed ROS production, as well as NOX and fibrotic gene expression.

"These data highlight the excellent pharmacological properties of GKT137831 and the broad potential for its use in fibrotic diseases,'' said Patrick Page, chief development officer at Genkyotex and contributor to the study.

According to Brenner, the next steps include a clinical trial with this drug in patients with .

Explore further: Scarring cells revert to inactive state as liver heals

Related Stories

Scarring cells revert to inactive state as liver heals

May 7, 2012

An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, report that significant numbers of myofibroblasts – cells that produce the fibrous scarring in chronic ...

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.