Study finds mechanism that turns white fat into energy-burning brown fat

August 2, 2012

Columbia University Medical Center (CUMC) researchers have identified a mechanism that can give energy-storing white fat some of the beneficial characteristics of energy-burning brown fat. The findings, based on studies of mice and of human fat tissue, could lead to new strategies for treating obesity and type 2 diabetes. The study was published today in the online edition of the journal Cell.

Humans have two types of fat tissue: white fat, which stores in the form of , and brown fat, which is highly efficient at dissipating stored energy as heat. have a relative abundance of brown fat, as protection against exposure to . In adults, however, almost all excess energy is stored as white fat.

"Turning white fat into brown fat is an appealing to staunching the , but it has been difficult to do so in a safe and effective way," said study leader Domenico Accili, MD, professor of Medicine and the Russell Berrie Foundation Professor at CUMC.

White fat can be "browned" with a class of drugs called thiazolidazines (TZDs), which increase the body's sensitivity to . However, TZDs have many — including liver toxicity, bone loss, and, ironically, weight gain — which have limited the use of these drugs.

The current study was undertaken to learn more about the function of TZDs, with the ultimate goal of developing better ways to promote the browning of white fat.

Scientists have known that TZDs promote the browning of white fat by activating a cell receptor called peroxisome proliferator-activated receptor–gamma (ppar-gamma), but the exact mechanism was not clear. To learn more, Dr. Accili and his colleagues studied a group of enzymes called sirtuins, which are thought to affect various biological processes, including metabolism.

The researchers had previously shown in mice that when sirtuin activity increases, so does metabolic activity. In the present study, they found that sirtuins boost metabolism by promoting the browning of white fat. "When we sought to identify how sirtuins promote browning, we observed many similarities between the effect of sirtuins and that of TZDs," said lead author Li Qiang, PhD, associate research scientist in Medicine at CUMC.

Sirtuins work by severing the chemical bonds between acetyl groups and proteins, a process known as deacetylation. "So the next question was whether sirtuins remove acetyl groups from ppar-gamma and, indeed, that was what we found," said Dr. Qiang.

To confirm that the deacetylation of ppar-gamma is crucial to the browning of fat, the researchers created a mutant version of ppar-gamma, in effect mimicking the actions of sirtuins. The mutation promoted the development of brown fat–like qualities in white fat.

"Our findings have two important implications," said Dr. Accili. "First, they suggest that TZDs may not be so bad — if you can find a way to tweak their activity. Second, one way to tweak their activity is by using sirtuin agonists — that is, drugs that promote sirtuin activity."

"The truth is, making sirtuin agonists has proved to be a real bear — more promise than fact," he continued. "But now, for the first time, we have a biomarker for good sirtuin activity: the deacetylation of ppar-gamma. In other words, any substance that deacetylates ppar-gamma should in turn promote the browning of white fat and have a beneficial metabolic effect."

Explore further: System in brain -- target of class of diabetes drugs -- linked to weight gain

More information: "Brown Remodeling of White Adipose Tissue by SirT1-Dependent Deacetylation of Ppar-gamma." Cell, 2012.

Related Stories

Teaching fat cells to burn calories

March 8, 2012

(Medical Xpress) -- In the war against obesity, one’s own fat cells may seem an unlikely ally, but new research from the University of California, San Francisco (UCSF) suggests ordinary fat cells can be reengineered ...

A new candidate pathway for treating visceral obesity

May 6, 2012

Brown seems to be the color of choice when it comes to the types of fat cells in our bodies. Brown fat expends energy, while its counterpart, white fat stores it. The danger in white fat cells, along with the increased risk ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.