How attention helps you remember

by Anne Trafton
A human astrocyte cell. Credit: Wikipedia/Bruno Pascal

A new study from MIT neuroscientists sheds light on a neural circuit that makes us likelier to remember what we're seeing when our brains are in a more attentive state.

The team of found that this circuit depends on a type of cell long thought to play a supporting role, at most, in neural processing. When the brain is attentive, those cells, called astrocytes, relay messages alerting neurons of the visual cortex that they should respond strongly to whatever they are receiving.

The findings, published this week in the online edition of the , are the latest in a growing body of evidence suggesting that astrocytes are critically important for processing sensory information, says Mriganka Sur, the Paul E. and Lilah Newton Professor of Neuroscience at MIT and senior author of the paper.

Sur's lab has been studying astrocytes for about five years, as part of a longstanding interest in revealing the functions of different cell types in the cortex. The star-shaped cells were first discovered and named 150 years ago, but since then, "it's been a mystery what they do," says Sur, who is a member of MIT's Picower Institute for and director of the Simons Center for the at MIT.

Lead authors of the paper are graduate student Naiyan Chen and research scientist Hiroki Sugihara. Other authors are research scientist Jitendra Sharma, postdocs Gertrudis Perea and Jeremy Petravicz, and technical assistant Chuong Le.

Attention strengthens response

In this study, the researchers focused on what astrocytes do when the brain is stimulated to pay attention to a specific . When someone is paying close attention to something, the nucleus basalis—a structure located deep within the brain, behind the eyes—floods the brain with a neurotransmitter called acetylcholine. Some of this acetylcholine targets astrocytes in the visual cortex.

To explore how astrocytes react to this stimulation, the researchers measured what happened in the visual cortex as they showed mice several visual patterns composed of parallel lines oriented in different directions. For one of the visual patterns, the researchers also provoked the nucleus basalis to release acetylcholine at the same time. This greatly boosted calcium levels in the astrocytes, indicating high activity.

When the mice were shown the same stimuli a few minutes later, the pattern that had been presented along with acetylcholine stimulation provoked a much stronger response in neurons of the than the other patterns.

The researchers then did the same test in genetically engineered mice whose astrocytes were disabled. In those mice, the acetylcholine released by the nucleus basalis did not strengthen neurons' response to visual stimuli.

"If you are paying attention to something, which causes this release of acetylcholine, that leads to a long-lasting memory of that stimulus. If you remove the astrocytes, that doesn't happen," Sur says.

The strengthening effect lasts for tens of minutes, after which the neurons return to their original activity level in response to the selected stimulus.

"More directly than any other study to date, it illustrates the critical role of astrocytes in plasticity," says Michael Merzenich, a professor emeritus of neuroscience at the University of California at San Francisco, who was not part of the research team. "It's a crystal-clear demonstration."

'Major players in brain disorders'

It is already known that acetylcholine levels drop in the brains of patients with Alzheimer's disease. In fact, a commonly used treatment that can boost memory in Alzheimer's patients is a drug that blocks the degradation of acetylcholine. In a follow-up study, the researchers are planning to study how astrocytes are affected in mouse models of Alzheimer's.

Sur's lab is also studying the effects of nucleus basalis stimulation on inhibitory neurons. Those effects are thought to be shorter term, lasting seconds or fractions of seconds.

"You cannot understand brain disorders without understanding the basic mechanisms of cortical brain function," Sur says. "These cell types—astrocytes, inhibitory neurons—are emerging as major players in brain disorders, in unexpected ways."

Related Stories

Recommended for you

New ALS associated gene identified using innovative strategy

1 hour ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

1 hour ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

2 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

5 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

5 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments