Noninvasive measurement enables use of IFP as potential biomarker for tumor aggressiveness

Researchers validated a method of noninvasive imaging that provides valuable information about interstitial fluid pressure of solid tumors and may aid in the identification of aggressive tumors, according to the results of a study published in Cancer Research, a journal of the American Association for Cancer Research.

Many malignant solid tumors generally develop a higher interstitial fluid pressure (IFP) than normal tissue. High IFP in tumors may cause a reduced uptake of chemotherapeutic agents and resistance to . In addition, a high IFP has been found to promote metastatic spread.

"Currently, an imaging method for noninvasive assessment of the IFP of tumors is needed to evaluate the potential of IFP as a biomarker for cancer aggressiveness and, hence, to identify patients with cancer who may benefit from particularly aggressive treatment because of highly elevated tumor IFP," said Einar K. Rofstad, Ph.D., of the department of radiation biology at the Institute for , Norwegian Radium Hospital, Oslo, Norway.

Rofstad and colleagues tested the use of dynamic contrast-enhanced (MRI) to evaluate the velocity of fluid flow from tumors in human cell lines of cervical carcinoma and melanoma implanted in mice. Researchers hypothesized that the velocity of fluid flow from tumor tissue into adjacent tissue was determined by the IFP drop at the tumor surface.

Results indicated that the velocity of the fluid flow at the tumor surface strongly correlated with the magnitude of the tumor IFP and that dynamic contrast-enhanced MRI with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as a contrast agent can be used to noninvasively measure the fluid-flow velocity. In addition, primary tumors of mice with metastases had a significantly higher IFP and fluid-flow velocity at the tumor surface compared with the primary tumors of metastasis-free mice, confirming that the development of lymph node metastases strongly correlated to the IFP of the primary tumor and the velocity of fluid flow as measured by Gd-DTPA-based dynamic contrast-enhanced MRI.

"Our findings establish that Gd-DTPA-based dynamic contrast-enhanced MRI can noninvasively visualize tumor IFP," Rofstad said. "This reveals the potential for the fluid-flow velocity at the tumor surface determined by this imaging method to serve as a novel general biomarker of tumor aggressiveness."

Rofstad said that comprehensive prospective clinical investigations in several types of cancer are needed to assess the value of fluid-flow velocity at the tumor surface level assessed by Gd-DTPA-based dynamic contrast-enhanced MRI as a general biomarker for interstitial hypertension-induced cancer aggressiveness.

add to favorites email to friend print save as pdf

Related Stories

How the fluid between cells affects tumors

Jul 25, 2012

There are many factors that affect tumor invasion, the process where a tumor grows beyond the tissue where it first developed. While factors like genetics, tissue type and environmental exposure affect tumor ...

Recommended for you

US women's awareness of breast density varies

6 hours ago

Disparities in the level of awareness and knowledge of breast density exist among U.S. women, according to the results of a Mayo Clinic study published in the Journal of Clinical Oncology.

Study shows why some brain cancers resist treatment

6 hours ago

Scientists at The University of Texas MD Anderson Cancer Center may have discovered why some brain cancer patients develop resistance to standard treatments including radiation and the chemotherapy agent temozolomide.

Researchers identify genes responsible for lung tumors

8 hours ago

The lung transcription factor Nkx2-1 is an important gene regulating lung formation and normal respiratory functions after birth. Alterations in the expression of this transcription factor can lead to diseases such as lung ...

Lycopene may ward off kidney cancer in older women

10 hours ago

A higher intake by postmenopausal women of the natural antioxidant lycopene, found in foods like tomatoes, watermelon and papaya, may lower the risk of renal cell carcinoma, a type of kidney cancer.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.