Long non-coding RNA molecules necessary to regulate differentiation of embryonic stem cells into cardiac cells

by Anne Trafton

When the human genome was sequenced, biologists were surprised to find that very little of the genome—less than 3 percent—corresponds to protein-coding genes. What, they wondered, was all the rest of that DNA doing?

It turns out that much of it codes for genetic snippets known as long non-coding RNAs, or lncRNAs. In recent years, scientists have found that these molecules often help to regulate which genes get turned on or off inside a cell. However, little is known about the specific roles of the thousands of lncRNAs discovered so far.

In a new study, MIT have identified a critical role for a lncRNA they dubbed "Braveheart." This lncRNA appears to stimulate to transform into during mouse embryonic stem cell (ESC) differentiation; the researchers suspect that lncRNAs may control this process in humans as well. If so, learning more about lncRNAs could offer a new approach to developing regenerative drugs for patients whose hearts have been damaged by cardiovascular disease or aging.

"It opens a new door to what we could do, and how we could use lncRNAs to induce specific cell types, that's been completely unexplored," says Carla Klattenhoff, a postdoc in MIT's Department of Biology and one of the lead authors of a paper describing the findings in the Jan. 24 online edition of Cell.

MIT postdoc Johanna Scheuermann is also a lead author of the paper. Senior author is Laurie Boyer, the Irwin and Helen Sizer Career Development Associate Professor of Biology at MIT.

The researchers zeroed in on the Braveheart lncRNA because they had noticed that it is abundant both in ESCs and in differentiating heart cells. In the new study, they found that without normal levels of the Braveheart lncRNA, mouse ESCs did not develop any of the three major types of heart cells that comprise the (which make up ), and .

They also showed that Braveheart controls the gene known to be a master regulator of heart-cell differentiation in vertebrate animals. This gene, called MesP1, initiates a cascade of hundreds of genes needed for heart development. However, without Braveheart, this process never gets started.

The researchers found that Braveheart controls the cascade by interacting with a protein complex known as the PRC2 complex, which normally sits on top of DNA, blocking MesP1 and other genes necessary for heart-cell development. When Braveheart interacts with it, the MesP1 network is activated and heart development proceeds.

"This paper is definitely a first step toward what we need to do, which is understand in a more fundamental way the biological role of these noncoding RNAs," says Ramin Shiekhattar, a professor of gene regulation and expression at the Wistar Institute in Philadelphia.

Shiekhattar, who was not part of the research team, adds that important next steps include deciphering in more detail the mechanism of how this lncRNA exerts its effects, and testing what happens when the lncRNA is knocked out in mice.

LncRNAs may also contribute to the species-specific complexity of organs such as the heart, according to the MIT team. This could help explain why the human heart is so much more complex than, for example, the fly heart, even though both species use many of the same cardiac protein-coding genes.

"We think that the added complexity may come from the non-coding portion of the genome, and we think lncRNAs are involved," Scheuermann says.

The researchers are now looking for other lncRNAs that function in cardiac development in mice, and are also searching for human lncRNAs involved in heart-cell . So far they have not found a direct human analog of Braveheart—which is not surprising, Klattenhoff says, because lncRNAs tend to evolve much more rapidly than protein-coding genes. However, they expect to identify many novel lncRNAs that play critical roles in human heart development and to find that mutations in lncRNAs will contribute to cardiovascular diseases.

Related Stories

RNA spurs melanoma development

May 10, 2011

Traditionally, RNA was mostly known as the messenger molecule that carries protein-making instructions from a cell's nucleus to the cytoplasm. But scientists now estimate that approximately 97 percent of human RNA doesn't ...

Gene directs stem cells to build the heart

Jul 02, 2008

Researchers have shown that they can put mouse embryonic stem cells to work building the heart, potentially moving medical science a significant step closer to a new generation of heart disease treatments that use human stem ...

Dark matter DNA active in brain during day-night cycle

Sep 24, 2012

(Medical Xpress)—Long stretches of DNA once considered inert dark matter appear to be uniquely active in a part of the brain known to control the body's 24-hour cycle, according to researchers at the National Institutes ...

Recommended for you

New biomedical implants accelerate bone healing

4 hours ago

A major success in developing new biomedical implants with the ability to accelerate bone healing has been reported by a group of scientists from the Department of Restorative Dentistry, University of Malaya. ...

User comments