New clues in hunt for heredity in type 2 diabetes

Type 2 diabetes has strong hereditary tendencies and the genes we are born with cannot be changed. However, new research from Lund University in Sweden shows that we can modify the function of the genes through the epigenetic changes that take place in the course of life. Epigenetic changes are usually described as a link between heredity and environment and come about as a result of factors such as ageing, chemicals, medication, diet, exercise and drugs.

Researchers have now demonstrated that half of the known variants for type 2 diabetes can be influenced by that in turn influence the function of the insulin-producing cells.

"This means that we gain a tool to influence the function of the risk genes, improve and thereby reduce the risk of diabetes", says Charlotte Ling at Lund University Diabetes Centre, who has today published a study on epigenetic effects in connection with type 2 diabetes in the journal Diabetologia.

The epigenetic factor that has been studied is a chemical change on the following a certain pattern, known as .

"We have shown that 19 of 40 known genetic risk variants for type 2 diabetes are affected by DNA methylation, which in turn changes the function of the insulin-producing cells", says Charlotte Ling. "This is important. Many researchers have put a lot of time and resources into mapping our genome and finding genetic risk markers for diabetes and other diseases. We know that there are genetic variants that increase the risk of type 2 diabetes, but in most cases the reasons why this happens are still not known. The next step is to find this out and after this study of the genetic risk variants, we can say that in some cases the increased risk is probably due to varying degrees of DNA methylation."

The research group has studied insulin-producing cells from 84 deceased donors. This is the first epigenetic study to be carried out on the 40 risk markers for type 2 diabetes.

The present study shows that DNA methylation of genetic risk variants for diabetes influence the insulin-producing cells in various different ways, such as the amount of insulin they contain and the amount they are able to release into the blood stream.

"The next step in our work is to test whether we can reduce the risk of by changing the degree of DNA methylation in the genetic risk variants for the disease."

More information: Dayeh, T. et al. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets, Diabetologia, 2013 Mar 6. link.springer.com/article/10.1… %2Fs00125-012-2815-7

Related Stories

Genetic study links body clock receptor to diabetes

date Jan 29, 2012

A study published in Nature Genetics today has found new evidence for a link between the body clock hormone melatonin and type 2 diabetes. The study found that people who carry rare genetic mutations in the receptor for me ...

Recommended for you

Extra DNA acts as a 'spare tire' for our genomes

date 23 minutes ago

Carrying around a spare tire is a good thing—you never know when you'll get a flat. Turns out we're all carrying around "spare tires" in our genomes, too. Today, in ACS Central Science, researchers report that an extra ...

Genetic testing in kids is fraught with complications

date Jul 02, 2015

A woman coping with the burden of familial breast cancer can't help but wonder if her young daughter will suffer the same fate. Has she inherited the same disease-causing mutation? Is it best to be prepared ...

Cause of acute liver failure in young children discovered

date Jul 02, 2015

Acute liver failure is a rare yet life-threatening disease for young children. It often occurs extremely rapidly, for example, when a child has a fever. Yet in around 50 percent of cases it is unclear as to why this happens. ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.