Researchers form new nerve cells—directly in the brain

March 26, 2013

The field of cell therapy, which aims to form new cells in the body in order to cure disease, has taken another important step in the development towards new treatments. A new report from researchers at Lund University in Sweden shows that it is possible to re-programme other cells to become nerve cells, directly in the brain.

Two years ago, researchers in Lund were the first in the world to re-programme , known as fibroblasts, to dopamine-producing nerve cells – without taking a detour via the stem cell stage. The research group has now gone a step further and shown that it is possible to re-programme both skin cells and support cells directly to nerve cells, in place in the brain.

"The findings are the first important evidence that it is possible to re-programme other cells to become nerve cells inside the brain", said Malin Parmar, research group leader and Reader in Neurobiology.

The researchers used genes designed to be activated or de-activated using a drug. The genes were inserted into two types of human cells: and – support cells that are naturally present in the brain. Once the researchers had transplanted the cells into the brains of rats, the genes were activated using a drug in the animals' drinking water. The cells then began their transformation into nerve cells.

In a separate experiment on mice, where similar genes were injected into the mice's brains, the research group also succeeded in re-programming the mice's own glia cells to become nerve cells.

"The have the potential to open the way for alternatives to in the future, which would remove previous obstacles to research, such as the difficulty of getting the brain to accept foreign cells, and the risk of tumour development", said Malin Parmar.

All in all, the new technique of direct re-programming in the brain could open up new possibilities to more effectively replace dying in conditions such as Parkinson's disease.

"We are now developing the technique so that it can be used to create new that replace the function of damaged cells. Being able to carry out the re-programming in vivo makes it possible to imagine a future in which we form new cells directly in the human brain, without taking a detour via cell cultures and transplants", concluded Malin Parmar.

Explore further: From stem cell to brain cell - new technique mimics the brain

More information: Generation of induced neurons via direct conversion in vivo, Proceedings of the National Academy of Science (PNAS) Published online before print March 25, 2013, doi: 10.1073/pnas.1303829110

Related Stories

From stem cell to brain cell - new technique mimics the brain

May 24, 2012

A new technique that converts stem cells into brain cells has been developed by researchers at Lund University. The method is simpler, quicker and safer than previous research has shown and opens the doors to a shorter route ...

Stimulating brain cells with light

October 26, 2012

For the time being, this is basic research but the long term objective is to find new ways of treating Parkinson's disease. This increasingly common disease is caused by degeneration of the brain cells producing signal substance ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.