Deficiency in p53 anti-tumor protein delays DNA repair after radiation

Researchers at Moffitt Cancer Center have found that a deficiency in an important anti-tumor protein, p53, can slow or delay DNA repair after radiation treatment. They suggest that this is because p53 regulates the expression of two enzymes (JMJD2b and SUV39H1) that control the folding of DNA.

According to the researchers, p53 is highly inducible by radiation. Activation of p53 stabilizes chromosomes by promoting the repair of heterochromatin DNA, which controls the expression of nearby genes and ensures accurate distribution of chromosomes during cell division.

Their findings, which published online Feb. 4 in Oncogene, are significant because they shed light on the consequence of p53 deficiency that frequently occurs in tumors and further explain the function of p53 in the development of cancer.

Crucial to multicellular organisms, p53 is a that regulates the cell cycle and helps prevent cancer by maintaining genetic stability and inhibiting . But after irradiation, p53 deficiency results in abnormal levels of SUV39H1 and JMJD2b, enzymes that play a vital role in the structure of chromosomes, especially in DNA damage control and repair.

"Different tumor types have variable responses to ionizing radiation," explained study lead author Jiandong Chen, Ph.D., senior member of the and Molecular Medicine Program at Moffitt. "Radiation therapy is more effective if tumors are defective in repairing damaged DNA. The is compromised to different degrees in all tumors, which may explain the fact that radiation often kills more than normal cells."

In this study, the researchers worked with multiple cancer cell lines.

"We found that p53 activates JMJD2b and represses SUV39H1," Chen said. "Depletion of JMJD2b, or sustained expression of SUV39H1, delays the repair of heterochromatin DNA after ," explained Chen. "The function of p53 may be particularly important in higher organisms because of the increased complexity of their genomes."

Although they note that there is no general consensus on the relationship between p53 mutation status and treatment response, in certain narrow settings such as breast cancer, p53 mutation is associated with favorable response to chemotherapy.

"We can conclude that the chromatin modifiers SUV39H1 and JMJD2b are important mediators of p53 function in maintaining the stability of highly repetitive DNA sequences, and developing new drugs that target these enzymes may benefit cancer therapy," the researchers wrote.

More information: www.nature.com/onc/journal/vao… /full/onc20136a.html

Related Stories

A protein's role in helping cells repair DNA damage

Nov 01, 2012

(Medical Xpress)—In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.

New drug shrinks cancer in animals, study shows

Apr 06, 2011

A study led by researchers at the University of Michigan Comprehensive Cancer Center showed in animal studies that new cancer drug compounds they developed shrank tumors, with few side effects.

Recommended for you

Cancerous tumors may spread by pure chance

4 hours ago

The spreading of a cancerous tumor from one part of the body to another may occur through pure chance instead of key genetic mutations, a new study has shown.

Lanreotide improves survival with enteropancreatic tumors

22 hours ago

(HealthDay)—Lanreotide significantly improves survival among patients with metastatic enteropancreatic neuroendocrine tumors (grade 1 or 2), according to a study published in the July 17 issue of the New En ...

User comments