Disrupting cell signals may lead to new cancer treatments

(Medical Xpress)—Scientists have taken a major step towards developing new treatments for certain cancers by disrupting the internal cellular signals that lead to the uncontrolled growth of cancerous cells.

It is hoped that this breakthrough will open the door to a new generation of therapies that specifically target fast growing without the need for heavy doses chemotherapy or radiotherapy.

This discovery hinges on the fact that some cancers are caused by disruptions to specific signalling pathways found within cells. Researchers at the University of Glasgow discovered a method of breaking the signalling pathways that are expressing cancerous genes, which will allow them to significantly slow tumour growth.

Dr George Baillie, the Principal Investigator on the project, said: This is tremendously exciting leap forward in the search for more effective cancer treatments. Controlling this activity within cells gives us the real potential to help where cannot be used, and we hope that this discovery opens the door for new ways of fighting the disease."

The hope is that this breakthrough has the potential to lead to a new generation of drugs that will significantly slow and tumour growth.

Growth and division of cells is regulated, in part, by one particular cellular pathway called mitogen-activated protein kinase (MAPK). The MAPK pathway controls a variety of including cell division and . It also coordinates the cell's responses towards various external stress factors which threaten its stability.

However, the MAPK pathway often becomes disrupted during the onset of certain cancers, causing tumours to form.

A team of scientists have successfully designed and synthesised a custom built molecule, or peptide agent, in the laboratory which is capable of passing undetected into the cell and disrupting the MAPK signalling channel where it is orchestrating .

To disrupt the MAPK signalling channel researchers needed to locate located a particular signalling node within the pathway that regulates its action. At this point, two specific enzymes, Raf-1 and PDE8A, bind together causing a reaction that significantly boosts cell growth.

Researchers were able to map the interaction of the surfaces between the two enzymes and develop a new peptide molecule that could permeate the cell membrane and then disassemble the Raf-1 – PDE8A complex.

This action breaks the MAPK signalling pathway and significantly slows cell replication and tumour growth in instances where cancerous genes are being expressed.

The full research paper is published in the journal Proceedings of the national Academy of Sciences (PNAS). You can read it in full on their website: www.pnas.org/content/110/16/E1533.short

Related Stories

Nanoparticles May Help Optimize Chemotherapy

date May 06, 2009

(PhysOrg.com) -- A research group reported recently in the Proceedings of the National Academy of Sciences that they have engineered nanoparticles to help block a protein process that takes place in tumors, making the tu ...

Research makes significant cancer breakthrough

date Aug 08, 2012

(Medical Xpress) -- A major breakthrough by scientists at Queen's University Belfast could lead to more effective treatments for throat and cervical cancer. The discovery could see the development of new therapies, which ...

Recommended for you

Old cancer drug could have new use in fighting cancer

date 23 minutes ago

A drug used for decades to treat leukemia may have other uses in the fight against cancer, researchers at the University of Missouri have found. Previously, doctors used 6-Thioguanine, or 6-TG, as a chemotherapy ...

Cancer prevention efforts in the US a mixed bag

date 12 hours ago

While there has been substantial progress in some cancer control efforts in the past several decades, like reductions in smoking and increased utilization of cancer screening, progress in some areas is lagging, according ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.