Scientists use nature against nature to develop an antibiotic with reduced resistance

April 10, 2013

A new broad range antibiotic, developed jointly by scientists at The Rockefeller University and Astex Pharmaceuticals, has been found to kill a wide range of bacteria, including drug-resistant Staphylococcus (MRSA) bacteria that do not respond to traditional drugs, in mice. The antibiotic, Epimerox, targets weaknesses in bacteria that have long been exploited by viruses that attack them, known as phage, and has even been shown to protect animals from fatal infection by Bacillus anthracis, the bacteria that causes anthrax.

Target selection is critical for the development of new . To date, most approaches for target selection have focused on the importance of bacterial survival. However, in addition to survival, the Rockefeller scientists believe that should be identified by determining which have a low probability for developing resistance.

"For a billion years, phages repeatedly have infected populations of bacteria, and during this period of time they have identified weaknesses in the bacterial armor," says senior author Vincent A. Fischetti, professor and head of the Laboratory of and Immunology. "We're taking advantage of what phage have 'learned' during this period for us to identify new antibiotic targets that we believe will escape the problem of resistance found for other antibiotics."

The path to identification of this new target spanned more than seven years of effort. Fischetti and his colleagues used a phage-encoded molecule to identify a bacterial target enzyme called 2-epimerase, which is used by Bacillus anthracis to synthesize an essential cell wall structure. In 2008, Fischetti's lab, with Rockefeller's Erec Stebbins and his colleagues in the Laboratory of Structural Microbiology, solved the of this enzyme. Based on this work, the researchers identified a previously unknown in 2-epimerase that involves direct interaction between one substrate molecule in the enzyme's active site and another in the enzyme's allosteric site. Fischetti and his colleagues chose to target the allosteric site of 2-epimerase to develop inhibitory compounds, because it is found in other bacterial 2-epimerases but not in the human equivalent of the enzyme.

Through the collaboration with Astex, an inhibitor of 2-epimerase named Epimerox was developed. Raymond Schuch, a former postdoctoral researcher in Fischetti's lab, tested the inhibitor in mice infected with Bacillus anthracis. He found that not only did Epimerox protect the animals from anthrax, but the bacteria did not develop resistance to the inhibitor. The researchers also found that Epimerox was able to kill methicillin-resistant Staphylococcus aureus (or MRSA) with no evidence of resistance even after extensive testing. Their work was published this week in PLOS One.

"Since nearly all Gram-positive bacteria contain 2-epimerase, we believe that Epimerox should be an effective broad-range antibiotic agent," says Fischetti. "The long-term evolutionary interaction between phage and bacteria has allowed us to identify targets that bacteria cannot easily change or circumvent. That finding gives us confidence that the probability for developing resistance to Epimerox is rather low, thereby enabling treatment of infections caused by multi-drug-resistant bacteria such as MRSA. It is a very encouraging result at a time when antibiotic resistance is a major health concern."

Explore further: Structural study of anthrax yields new antibiotic target

Related Stories

Structural study of anthrax yields new antibiotic target

January 28, 2008

Researchers studying anthrax knew they were onto something when they discovered an opponent the bacterium couldn’t outwit. Probing a bit deeper, they discovered this was because the attacker was interacting with something ...

New antibiotic beats superbugs at their own game

July 3, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller University ...

Newly engineered enzyme is a powerful staph antibiotic

February 8, 2010

(PhysOrg.com) -- In the past decade, methicillin-resistant Staphylococcus aureus, or MRSA, has ushered in a new era in the fight between man and bug. By harnessing the power of nature’s own antibiotics, scientists have ...

Anthrax targets

August 20, 2012

A trawl of the genome of the deadly bacterium Bacillus anthracis has revealed a clutch of targets for new drugs to combat an epidemic of anthrax or a biological weapons attack. The targets are all proteins that are found ...

Additive restores antibiotic effectiveness against MRSA

October 22, 2012

Researchers from North Carolina State University have increased the potency of a compound that reactivates antibiotics against methicillin-resistant Staphylococcus aureus (MRSA), an antibiotic-resistant form of Staphylococcus ...

Recommended for you

Non-addictive painkiller shows promise in animal trials

August 30, 2016

(HealthDay)—Preliminary research in monkeys suggests that a new medication might be able to provide pain relief similar to opioid drugs such as OxyContin, but without the same potential for addiction or serious side effects.

Mylan launching cheaper, generic version of EpiPen

August 29, 2016

The maker of EpiPens will start selling a cheaper, generic version of the emergency allergy shots as the furor over repeated U.S. price hikes continues—and looming competition threatens its near-monopoly.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.