Immune cells that suppress genital herpes infections identified

Fred Hutchinson Cancer Research Center and University of Washington scientists have identified a class of immune cells that reside long-term in the genital skin and mucosa and are believed to be responsible for suppressing recurring outbreaks of genital herpes. These immune cells also play a role in suppressing symptoms of genital herpes, which is why most sufferers of the disease are asymptomatic when viral reactivations occur.

The discovery of this subtype of immune cells, called CD8αα+ T cells, opens a new avenue of research to develop a vaccine to prevent and treat herpes 2, or HSV-2. Identifying these T cells' specific , called epitopes, is the next step in developing a vaccine.

The findings are described in the May 8 advance online edition of Nature.

Better understanding of these newly identified CD8αα+ T cells may also play a critical role in developing effective vaccines against other types of skin and mucosal infections, according to senior author Larry Corey, M.D., Ph.D., an internationally renowned virologist and president and director of Fred Hutch.

"The discovery of this special class of cells that sit right at the nerve endings where HSV-2 is released into skin is changing how we think about HSV-2 and possible vaccines," said Corey. "For the first time, we know the type of immune cells that the body uses to prevent outbreaks. We also know these cells are quite effective in containing most reactivations of HSV-2. If we can boost the effectiveness of these we are likely to be able to contain this infection at the point of attack and stop the virus from spreading in the first place. We're excited about our discoveries because these cells might also prevent other types of viral infections, including HIV infection."

There is currently no effective vaccine for . "While antiviral treatment is available, the virus often breaks through this barrier and patients still can transmit the infection to others," Corey said. "In addition, newborn herpes is one of the leading infections transmitted from mothers to children at the time of delivery. An effective genital herpes vaccine is needed to eliminate this complication of HSV-2 infection."

The long-term persistence of CD8αα+ T cells where initial infection occurs may explain why patients have asymptomatic recurrences of genital herpes because these cells constantly recognize and eliminate the virus, according to Jia Zhu, Ph.D., corresponding author, research assistant professor in Laboratory Medicine at the University of Washington and an affiliate investigator in the Fred Hutch Vaccine and Infectious Disease Division.

"The cells we found perform immune surveillance and contain the virus in the key battlefield where infection occurs, which is the dermal-epidermal junction," said Zhu. "These cells are persistent in the skin and represent a newly discovered phenotype distinguished from those of CD8+ T cells circulating in the blood."

The dermal-epidermal junction (DEJ) is where the dermis (outer skin layer) connects to the epidermis (the tissue layers just beneath the skin). This junction is important because of the roles it plays in cellular communication, nutrient exchange and absorption, and other skin functions.

Scientists examined the DEJ for T cell activity because this is where the genital herpes virus multiplies after reactivating and traveling from its hiding place in the body's sensory neurons. Previous research by the same research group showed that the reach the dermal-epidermal junction and release the virus that infects the skin and can cause lesions.

Prior to this research, CD8αα+ T cells were known to exist in the gut mucosa. Much of the research on CD8+ T cells has focused on studying them in the circulating blood, which has a dominant phenotype of CD8αβ+. Fred Hutch and UW scientists compared the two types of CD8+ T cells and found that only the CD8αα+ T cells persist in the skin while CD8αβ+ T cells diminished from the tissue after healing of a herpes lesion.

"We did not expect to find CD8αα+ T in the skin," Zhu said. "This was a surprise."

The research involved using novel technologies to examine the in human tissues. In all, the work provides a roadmap that can be applied to other human diseases, according to Zhu.

Zhu said the studies the research group performed in humans are unique. "To our knowledge, we are the only research group to use sequential human biopsies to study CD8+ T cell function in situ, in their natural spatial distribution and at their original physiological state," she said.

According to the federal Centers for Disease Control and Prevention, 776,000 people in the United States are newly infected with herpes annually. Nationwide, 16.2 percent, or about one out of six people aged 14 to 49 years have genital HSV-2 infection. Generally, a person can only get HSV-2 infection during sexual contact with someone who has a genital HSV-2 infection. Transmission can occur from an infected partner who does not have a visible sore and may not know that he or she is infected.

Most individuals infected with HSV-2 or the related HSV-1, which causes genital herpes and cold sores, experience either no symptoms or have very mild symptoms that go unnoticed or are mistaken for another condition. Because of this, most people infected with HSV-2 are not aware of their infection.

More information: "Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection," Nature, 2013. DOI: 10.1038/nature12110

Related Stories

Study reveals new approach for stopping herpes infections

Mar 25, 2013

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a novel strategy for preventing infections due to the highly common herpes simplex viruses, the microbes responsible for causing genital ...

Research shows progress toward a genital herpes vaccine

Jan 04, 2012

An investigational vaccine protected some women against infection from one of the two types of herpes simplex viruses that cause genital herpes, according to findings in the New England Journal of Medicine.

Study finds genital herpes vaccine ineffective in women

Sep 30, 2010

An experimental vaccine intended to prevent genital herpes disease in women, although generally safe and well-tolerated, proved ineffective when tested in the recently concluded clinical study known as the Herpevac Trial ...

Recommended for you

Could trophoblasts be the immune cells of pregnancy?

9 hours ago

Trophoblasts, cells that form an outer layer around a fertilized egg and develop into the major part of the placenta, have now been shown to respond to inflammatory danger signals, researchers from Norwegian University of ...

Moms of food-allergic kids need dietician's support

17 hours ago

Discovering your child has a severe food allergy can be a terrible shock. Even more stressful can be determining what foods your child can and cannot eat, and constructing a new diet which might eliminate entire categories ...

Multiple allergic reactions traced to single protein

Dec 17, 2014

Johns Hopkins and University of Alberta researchers have identified a single protein as the root of painful and dangerous allergic reactions to a range of medications and other substances. If a new drug can ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
not rated yet May 08, 2013
I wonder if this may lead to vaccination against the HSV-1 (associated with cold sores in the mouth).

BTW, I think this description about where the DEJ layer is, i.e. the layer where the virus multiplies is a bit misleading: "The dermal-epidermal junction (DEJ) is where the dermis (outer skin layer) connects to the epidermis (the tissue layers just beneath the skin)." The epidermis in the outer skin layer and the dermis is the main skin layer below the epidermis.

It is interesting that the virus from the neurons goes to the cells in that DEJ layer. I understand that is the place where the cells are multiplying (as in stem cells) and can create lots of cells to keep multiplying, as opposed to that neurons that are hard to if not impossible to multiply.
nanotech_republika_pl
not rated yet May 08, 2013
Correction: (...) and can create lots of cells to keep the virus multiplying (...)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.