Researchers succeed in programming blood forming stem cells

June 13, 2013

By transferring four genes into mouse fibroblast cells, researchers at the Icahn School of Medicine at Mount Sinai have produced cells that resemble hematopoietic stem cells, which produce millions of new blood cells in the human body every day. These findings provide a platform for future development of patient-specific stem/progenitor cells, and more differentiated blood products, for cell-replacement therapy.

The study, titled, "Induction of a Hemogenic Program in ," was published online in Cell Stem Cell on June 13. Mount Sinai researchers screened a panel of 18 genetic factors for inducing blood-forming activity and identified a combination of four transcription factors, Gata2, Gfi1b, cFos, and Etv6 as sufficient to generate blood vessel precursor cells with the subsequent appearance of . The express a human CD34 reporter, Sca1 and Prominin1 within a global endothelial transcription program.

"The cells that we grew in a are identical in gene expression to those found in the and could eventually generate colonies of mature ," said the first author of the study, Carlos Filipe Pereira, PhD, Postdoctoral Fellow of Developmental and Regenerative Biology at the Icahn School of Medicine.

Other leaders of the research team that screened the genetic factors to find the right combination included Kateri Moore, DVM, Associate Professor of Developmental and Regenerative Biology at the Icahn School and Ihor R. Lemischka, PhD, Professor of Developmental and Regenerative Biology, Pharmacology and Systems Therapeutics and Director of The Black Family Stem Cell Institute at The Mount Sinai Medical Center.

"The combination of gene factors that we used was not composed entirely of the most obvious or expected proteins," said Dr. Lemischka. "Many investigators have been trying to grow hematopoietic stem cells from , but this process has been problematic. Instead, we used mature mouse fibroblasts, picked the right combination of proteins, and it worked."

"This discovery is just the beginning of something new and exciting and can hopefully be used to identify a treatment for blood disorders," said Dennis S. Charney, MD, Anne and Joel Ehrenkranz Dean of the Icahn School of Medicine at Mount Sinai and Executive Vice President for Academic Affairs at The Mount Sinai Medical Center.

According to Dr. Pereira, there is a critical shortage of suitable donors for blood stem cell transplants. Donors are currently necessary to meet the needs of patients suffering from blood diseases such as leukemia, aplastic anemia, lymphomas, multiple myeloma and immune deficiency disorders. "Programming of represents an exciting alternative," said Pereira.

"Dr. Lemischka and I have been working together for over 20 years in the fields of hematopoiesis and stem cell biology," said Dr. Moore, senior author of the study. "It is truly exciting to be able to grow these blood forming cells in a culture dish and learn so much from them. We have already started applying this new approach to human cells and anticipate similar success."

Explore further: Team discovers new liver cell for cellular therapy to aid in liver regeneration

Related Stories

Unraveling tumor growth one stem cell at a time

June 4, 2013

Researchers at the University of Cambridge have discovered that a single mutation in a leukemia-associated gene reduces the ability of blood stem cells to make more blood stem cells, but leaves their progeny daughter cells ...

DNA-altering enzyme is essential for blood cell development

June 10, 2013

The expression of specific genes is partially dictated by the way the DNA is packed into chromatin, a tightly packed combination of DNA and proteins known as histones. HDAC3 is a chromatin-modifying enzyme that regulates ...

Study unlocks origins of blood stem cells

December 9, 2011

A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate precursors of ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.