Lifespan-extending drug given late in life reverses age-related heart disease in mice

Elderly mice suffering from age-related heart disease saw a significant improvement in cardiac function after being treated with the FDA-approved drug rapamycin for just three months. The research, led by a team of scientists at the Buck Institute for Research on Aging, shows how rapamycin impacts mammalian tissues, providing functional insights and possible benefits for a drug that has been shown to extend the lifespan of mice as much as 14 percent. There are implications for human health in the research appearing online in Aging Cell: heart disease is the leading cause of death in the U.S., claiming nearly 600,000 lives per year.

Researchers at the are currently recruiting seniors with cardiac artery disease for a clinical trial involving low dose treatment with .

Rapamycin is an immunosuppressant drug which can be used to help prevent after transplantation. It is also included in for some cancers. In this study, rapamycin was added to the diets of mice that were 24 months old – the human equivalent of 70 to 75 years of age. Similar to humans, the aged mice exhibited enlarged hearts, a general thickening of the heart wall and a reduced efficiency in the hearts ability to pump blood.

The mice were examined with ultrasound before and after the three-month treatment period - using metrics closely paralleling those used in humans. Buck Institute faculty Simon Melov, PhD, the senior author of the study, said age-related was either slowed or reversed in the treated mice. "When we measured the efficiency of how the heart pumps blood, the treated mice showed a remarkable improvement from where they started. In contrast, the untreated mice saw a general decline in pumping efficiency at the end of the same three month period," he said. "This study provides the first evidence that age-related heart dysfunction can be improved even in late life via appropriate drug treatment," added Melov, who said the treated mice saw a reduction in heart size, reduced stress signaling in heart tissues and a reduction in inflammation.

Buck researchers, utilizing genome analysis tools, uncovered suites of related genes which rapamycin modulates in the heart. "Rapamycin affected the expression of genes involved in calcium regulation, mitochondrial metabolism, hypertrophy and inflammation," said Melov. "We also carried out behavioral assessments which showed the treated mice spent more time on running wheels than the mice who aged without intervention."

"Little has been known about the functional ramifications of rapamycin in mammalian tissues," said Buck Institute President and CEO Brian Kennedy, PhD, a co-author of the paper. "These findings are significant because we have no interest in simply extending lifespan without an accompanying improvement in the health and quality of life." He added, "It is particularly encouraging that, in this case, an already-approved drug that extends lifespan also improved function late in life."

Chronic treatment with rapamycin has been problematic in both humans and ; the drug has the potential to cause deleterious metabolic side effects including weight gain and glucose insensitivity. Melov said in this study, the drug had only mild transient metabolic effects. Future studies will focus on better understanding the molecular targets that drive age-related heart dysfunction, and why rapamycin treatment is so beneficial to the aging hearts.

More information: www.clinicaltrials.gov/ct2/sho… rm=Rapamycin&rank=11

Related Stories

Study reveals how cancer drug causes diabetic-like state

Apr 03, 2012

Scientists at Dana-Farber Cancer Institute have discovered why diabetic-like symptoms develop in some patients given rapamycin, an immune-suppressant drug that also has shown anti-cancer activity and may even slow ageing.

New study explains duality of longevity drug rapamycin

Mar 29, 2012

A Penn- and MIT-led team explained how rapamycin, a drug that extends mouse lifespan, also causes insulin resistance. The researchers showed in an animal model that they could, in principle, separate the effects, which depend ...

Easter Island drug raises cognition throughout life span

Jun 29, 2012

Cognitive skills such as learning and memory diminish with age in everyone, and the drop-off is steepest in Alzheimer's disease. Texas scientists seeking a way to prevent this decline reported exciting results this week with ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments