Brain imaging study reveals our brains 'divide and conquer'

University of Queensland (UQ) researchers have found human brains 'divide and conquer' when people learn to navigate around new environments.

The research by UQ's Queensland Brain Institute (QBI) could provide hope for people with impairments.

The study found that the mental picture people create to help navigate to a new location is split into two sections.

The size of the environment is coded by one area of the and its complexity is coded in another.

QBI postdoctoral research fellow and lead researcher Dr Oliver Baumann said the work shed new light on how learning the layout of a new environment, and then accessing this information from memory, was represented in the brain.

"We've known for some time that a part of the brain called the hippocampus is important for building and maintaining cognitive maps," he said.

"The results of our study have shown for the first time that different aspects of a learned environment – specifically its size and complexity – are represented by distinct areas within the hippocampus."

QBI Cognitive Neuroscience Laboratory Head Professor Jason Mattingley said the findings could have important implications for people suffering from spatial .

"This research is important for understanding how our brain normally stores and manages spatial information," Professor Mattingley said.

"It also gives us clues as to why people with memory loss due to Alzheimer's disease often become lost in new or previously familiar surroundings."

Dr Baumann said 18 people navigated their way through three virtual mazes that differed either in the number of corridors through which they could travel or the length of the corridors.

After learning the task, the participants were asked to recall mental maps from each of the mazes while their brain activity was measured using functional .

"We found that one region in the hippocampus was more active when participants recalled a complex maze in which there were many corridors to choose from, irrespective of the overall size of the maze," Dr Baumann said.

"Conversely, we found that a separate area of the hippocampus was more active when the overall size of the maze increased, regardless of the number of corridors."

The study, "Dissociable representations of environmental size and complexity in the human hippocampus", is published in The Journal of Neuroscience.

More information: www.jneurosci.org/content/33/25/10526.abstract

Related Stories

Why bigger is better when it comes to our brain and memory

Dec 21, 2011

The hippocampus is an important brain structure for recollection memory, the type of memory we use for detailed reliving of past events. Now, new research published by Cell Press in the December 22 issue of the journal Neuron reveal ...

Recommended for you

New ALS associated gene identified using innovative strategy

10 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

10 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

11 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

14 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

14 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments