Brain imaging study reveals our brains 'divide and conquer'

July 18, 2013

University of Queensland (UQ) researchers have found human brains 'divide and conquer' when people learn to navigate around new environments.

The research by UQ's Queensland Brain Institute (QBI) could provide hope for people with impairments.

The study found that the mental picture people create to help navigate to a new location is split into two sections.

The size of the environment is coded by one area of the and its complexity is coded in another.

QBI postdoctoral research fellow and lead researcher Dr Oliver Baumann said the work shed new light on how learning the layout of a new environment, and then accessing this information from memory, was represented in the brain.

"We've known for some time that a part of the brain called the hippocampus is important for building and maintaining cognitive maps," he said.

"The results of our study have shown for the first time that different aspects of a learned environment – specifically its size and complexity – are represented by distinct areas within the hippocampus."

QBI Cognitive Neuroscience Laboratory Head Professor Jason Mattingley said the findings could have important implications for people suffering from spatial .

"This research is important for understanding how our brain normally stores and manages spatial information," Professor Mattingley said.

"It also gives us clues as to why people with memory loss due to Alzheimer's disease often become lost in new or previously familiar surroundings."

Dr Baumann said 18 people navigated their way through three virtual mazes that differed either in the number of corridors through which they could travel or the length of the corridors.

After learning the task, the participants were asked to recall mental maps from each of the mazes while their brain activity was measured using functional .

"We found that one region in the hippocampus was more active when participants recalled a complex maze in which there were many corridors to choose from, irrespective of the overall size of the maze," Dr Baumann said.

"Conversely, we found that a separate area of the hippocampus was more active when the overall size of the maze increased, regardless of the number of corridors."

The study, "Dissociable representations of environmental size and complexity in the human hippocampus", is published in The Journal of Neuroscience.

Explore further: Why bigger is better when it comes to our brain and memory

More information:

Related Stories

Why bigger is better when it comes to our brain and memory

December 21, 2011

The hippocampus is an important brain structure for recollection memory, the type of memory we use for detailed reliving of past events. Now, new research published by Cell Press in the December 22 issue of the journal Neuron ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.