The flexible tail of the prion protein poisons brain cells

Shown is a representation of a fragment of the antibody (POM1) that was raised against the folded domain of the mouse prion protein (green color). The two parts of the POM1 antibody fragment are represented in cyan and salmon colors. The domain of the antibody fragment that "recognizes" the folded part of the prion protein is labeled VH and VL standing for the variable heavy chain and the variable light chain of the Antibody POM1. Credit: University of Alberta

For decades, there has been no answer to the question of why the altered prion protein is poisonous to brain cells. Neuropathologists from the University of Zurich and University Hospital Zurich have now shown that it is the flexible tail of the prion protein that triggers cell death. These findings have far-reaching consequences: only those antibodies that target the tail of the prion protein are suitable as potential drugs for combating prion diseases.

Prion proteins are the that cause Mad Cow Disease and Creutzfeldt-Jakob disease. They occur when a normal becomes deformed and clumped. The naturally occurring prion protein is harmless and can be found in most organisms. In humans, it is found in our brain cell membrane. By contrast, the abnormally deformed prion protein is poisonous for the .

Adriano Aguzzi, Professor of Neuropathology at the University of Zurich and University Hospital Zurich, has spent many years exploring why this deformation is poisonous. Aguzzi's team has now discovered that the prion protein has a kind of "switch" that controls its toxicity. This switch covers a tiny area on the surface of the protein. If another molecule, for example an antibody, touches this switch, a lethal mechanism is triggered that can lead to very fast cell death.

Flexible tail induces cell death

In the current edition of Nature, the scientists demonstrate that the prion comprises two functionally distinct parts: a globular domain, which is tethered to the cell membrane, and a long and unstructured tail. Under normal conditions, this tail is very important in order to maintain the functioning of . By contrast, in the case of a prion infection the pathogenic prion protein interacts with the globular part and the tail causes cell death – this is the hypothesis put forward by the researchers.

This video is not supported by your browser at this time.
Prof. Adriano Aguzzi explains how the flexible tail of the prion protein poisons brain cells. Credit: Video: UZH, Brigitte Blöchlinger

Aguzzi and his team tested this by generating mimetic antibodies in tissue sections from the cerebellum of mice which have a similar toxicity to that of a prion infection. The researchers found that these antibodies tripped the switch of the prion protein. "Prion proteins with a trimmed version of the flexible tail can, however, no longer damage the brain cells, even if their switch has been recognized by antibodies," explains Adriano Aguzzi. "This flexible tail is responsible for causing cell death." If the tail is bound and made inaccessible using a further antibody, activation of the switch can likewise no longer trigger cell death.

"Our discovery has far-reaching consequences for understanding ," says Aguzzi. The findings reveal that only those antibodies that target the prion protein tail are suitable for use as potential drugs. By contrast, antibodies that trip the switch of the prion are very harmful and dangerous.

More information: Paper: dx.doi.org/10.1038/nature12402

Related Stories

The ribosome: A new target for antiprion medicines

Jul 02, 2013

New research results from Uppsala University, Sweden, show that the key to treating neurodegenerative prion diseases such as mad cow disease and Creutzfeldt-Jakob disease may lie in the ribosome, the protein synthesis machinery ...

New approach to protecting prion protein from altering shape

Jul 18, 2013

A team of researchers from Case Western Reserve University School of Medicine have identified a mechanism that can prevent the normal prion protein from changing its molecular shape into the abnormal form responsible for ...

Mutant proteins result in infectious prion disease in mice

Dec 05, 2008

A worldwide group of scientists has created an infectious prion disease in a mouse model, in a step that may help unravel the mystery of this progressive disease that affects the nervous system in humans and animals. The ...

Sequence and structure key to prion disease transmission

Jun 14, 2010

Prion diseases are lethal neurodegenerative disorders that include Creutzfeldt-Jakob disease (CJD) in humans and bovine spongiform encephalopathy (BSE; commonly known as mad cow disease) in cows. A team of researchers, led ...

Recommended for you

Cell death proteins key to fighting disease

8 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

Oct 30, 2014

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.