Neuroscientists find a key to reducing forgetting—it's about the network

August 29, 2013
brain

A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.

The study was conducted at New York University by Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas' Center for Vital Longevity and School of Behavioral and Brain Sciences in Dallas.

"When memories are supported by greater coordination between different parts of the brain, it's a sign that they are going to last longer," explained Davachi.

It is commonly understood that the key to —the cementing of an experience or information in our brain—is signaling from the brain's across different . Moreover, it has been hypothesized, but never proven, that the greater the distribution of signaling, the stronger the memory takes hold in our brain.

In the Neuron study, Davachi and Vilberg sought to determine if there was scientific support for this theory.

To do so, they examined how memories are formed at their earliest stages through a series of experiments over a three-day period.

On day one of the study, the researchers aimed to encode, or create, among the study's subjects. Here, they showed participants a series of images—objects and outdoor scenes, both of which were paired with words. Here, subjects were asked to form an association between the word and image presented on the screen.

On day two, the subjects returned to the lab and completed another round of encoding tasks using new sets of visuals and words. This allowed to the researchers to compare two types of memory: the more consolidated, long duration (LD) memories encoded on day one with the less consolidated, short duration (SD) memories encoded on day two.

After a short break, participants were placed in an MRI machine—in order to monitor neural activity—and viewed the same visual-word pairings they saw on days one and two as well as a new round of visuals paired with words. They then completed a memory test of approximately half of the visual-word pairings they'd seen thus far. On day three, they returned to the lab for a memory test on the remaining visuals.

By testing over multiple days, the researchers were able to isolate memories that declined or were preserved over time and, with it, better understand the neurological factors that contribute to memory preservation.

Their results showed that memories (i.e., the visual-word associations) that were not forgotten were associated with greater coordination between the hippocampus and left perirhinal cortex (LPRC)—two previously linked with memory formation. By contrast, there was notably less connectivity between these regions for visual-word associations that the study's subjects tended to forget.

Moreover, the researchers found that the coordinated brain activity between the hippocampus and the LPRC—but not overall activity in these regions—was related to memory strengthening, arguing for the network's contribution to memory .

"These findings show the brain strengthens memories by distributing them across networks," explained Davachi. "However, this process takes time. Day-old memories show greater coordinated brain activity compared to recent ones. This suggests that coordinated increases with time after a memory is initially formed."

Related Stories

Neuroscientists show ability to plant false memories

July 25, 2013

The phenomenon of false memory has been well-documented: In many court cases, defendants have been found guilty based on testimony from witnesses and victims who were sure of their recollections, but DNA evidence later overturned ...

Long-term memory in the cortex

August 27, 2013

(Medical Xpress)—'Where' and 'how' memories are encoded in a nervous system is one of the most challenging questions in biological research. The formation and recall of associative memories is essential for an independent ...

Negative feedback stabilizes memories

August 28, 2013

(Medical Xpress)—Memories may be maintained in the brain through a mechanism familiar to any engineer—negative and positive feedback loops, according to researchers Sukbin Lim and Mark Goldman at the UC Davis Center for ...

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.