New treatment for African sleeping sickness comes closer

November 6, 2013

Researchers at Umeå University have identified drugs targeting infections of the parasite Trypanosoma brucei and are thereby well on the way to find a cure against African sleeping sickness. This is the kernel of a thesis, which will be publicly defended on 8 November 2013.

African (Human African trypanosomiasis) is caused by a parasite called Trypanosoma brucei. As the name of the disease indicates, it is associated with sleep disturbances but there are many other neurological complications as well. Unless the patient is treated, the illness develops in stages and leads eventually to unconsciousness and death. At present, there is no vaccine available and the medicines that exist are either very toxic or do not work effectively against all variants of the disease.

All cells have the potential to renew themselves infinitely through . During cell division, the cell replicates its DNA, which constitutes the individual's genetic material, and then allows the DNA copy to pass on to the daughter cell. During this process, there is a need for a continuous supply of four different building blocks for DNA, i.e. dATP, dCTP, dTTP and dGTP. In human cells, these DNA building blocks can either be produced by the cells themselves, or absorbed in the form of so-called (deoxynucleosides) that are present in the blood and other body fluids.

It has already been observed that the parasite's production of RNA building blocks, which resemble DNA building blocks, could be a target for drug discovery whereas the parasite's production of DNA building blocks has not been studied to the same extent. Munender Vodnala from the Department of Medical Biochemistry and Biophysics has therefore focused his study on the cellular machinery involved in the production of DNA building blocks from precursor molecules. This is considered to be a promising target for drug development against the parasite.

The production of DNA from precursor molecules is made in three stages, so-called phosphorylations. Molecular biologist Munender Vodnala has demonstrated that the enzyme adenosine kinase, which is involved in the first production stage, can be used by the parasite to produce dATP from the precursor molecule deoxyadenosine. When the parasite Trypanosoma brucei is cultivated in the presence of large amounts of deoxyadenosine, it produces high levels of dATP compared with mammalian cells. At these levels, dATP becomes toxic to the parasites and they die within just a few hours. Furthermore, Vodnala has managed to identify two modified versions of deoxyadenosine, so-called analogues of deoxyadenosine. These resemble - but are significantly more effective than - deoxyadenosine itself in killing off the parasites.

"When we used deoxyadenosine analoues to treat mice that were infected with Trypanosoma brucei, we were able to cure the infections very successfully. These results indicate that we can now move on to develop an effective treatment for African sleeping sickness," says Vodnala.

Explore further: Genetic technique brings new hope for better treatments for sleeping sickness

More information: The thesis is published at urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80904

Related Stories

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.