Aging and gene expression—possible links to autism and schizophrenia in offspring

December 9, 2013

Advanced paternal age has been associated with greater risk for psychiatric disorders, such as schizophrenia and autism. With an increase in paternal age, there is a greater frequency of certain types of mutations that contribute to these disorders in offspring. Mutations are changes in the genetic code. Recent research, however, looks beyond the genetic code to "epigenetic effects", which do not involve changes in the genes themselves, but rather in how they are expressed to determine one's characteristics. Such epigenetic changes in sperm, related to ageing, have been linked with psychiatric disorders in offspring.

Maria Milekic, PhD, reported today, at the American College of Neuropsychopharmacology annual meeting in Hollywood Florida, that old mice have an epigenetic change ‒ a loss of DNA methylation at the locations where the starts being transcribed. DNA methylation is a biochemical process that plays an important regulatory role in development and disease. The work was done by a research team in the Department of Psychiatry at Columbia University.

Offspring of old fathers showed the same deficit in DNA methylation, and they differed in their behavior from the offspring of the young fathers. They showed less exploratory activity and differed in the startle response and in habituation.

Two groups, with 10 breeder mice per group, were tested. The breeders were either old (12 month) or young (3 month) males, each bred with two young (3 month) female mice. Then the behavior of the offspring was tested when they were 3 months old. DNA methylation also was tested in the young and old fathers' sperm, and brains of the offspring were tested for DNA methylation as well as gene expression.

"We were interested in understanding the mechanism of the effect", said Dr. Milekic."The risk for schizophrenia increases 2-fold when a father is over 45 years of age, and the risk for autism increases 2-5-fold. It seemed unlikely that mutation alone could account for this. We therefore speculated that DNA methylation could provide an alternative mechanism."

Not only did the of the old fathers differ from their counterparts with young fathers in DNA methylation, they also showed significant differences in the expression of genes that have been implicated in and that are known to regulate the development and function of the brain. These findings point to possible factors that can lead to autism spectrum disorders and schizophrenia, and ultimately may lead to more effective therapeutic interventions.

With respect to studies in the immediate future, Dr. Milekic said,"We are trying to evaluate changes in different brain regions. Our studies before did not compare brain regions. Most of the genes that have altered expression are in the cerebellum. We are interested in how DNA methylation in the cerebellum is affected by paternal age."

Related Stories

Mutation clue to disorders in older dads' offspring

September 1, 2011

Queensland Brain Institute (QBI) researchers have discovered a genetic mechanism that may explain why the children of older fathers are more likely to develop schizophrenia or autism.

Methylation linked to metabolic disease

November 11, 2013

(Medical Xpress)—In the first in-depth analysis of DNA methylation in fat, a process that affects the regulation of genes, researchers have linked regions of methylation to metabolic traits such as high body mass index ...

Linking risk factors and disease origins in breast cancer

November 20, 2013

Researchers from the Geisel School of Medicine at Dartmouth have found that epigenetic changes to DNA are associated with aging in disease-free breast tissues and are further altered in breast tumors. Epigenetic changes describe ...

Recommended for you

Blocking a gene reduces fat

July 29, 2015

By blocking the expression of a certain gene in patients, University of Montreal researchers have contributed to the demonstration of great decreases in the concentration of triglycerides in their blood, even in various severe ...

Study identifies 'major player' in skin cancer genes

July 27, 2015

A multidisciplinary team at Yale, led by Yale Cancer Center members, has defined a subgroup of genetic mutations that are present in a significant number of melanoma skin cancer cases. Their findings shed light on an important ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.