How metabolism and brain activity are linked

A new study by scientists at McGill University and the University of Zurich shows a direct link between metabolism in brain cells and their ability to signal information. The research may explain why the seizures of many epilepsy patients can be controlled by a specially formulated diet.

The findings, published Jan. 16 in Nature Communications, reveal that metabolism controls the processes that inhibit brain activity, such as that involved in convulsions. The study uncovers a link between how brain cells make energy and how the same cells signal information – processes that neuroscientists have often assumed to be distinct and separate.

"Inhibition in the brain is commonly targeted in clinical practice," notes Derek Bowie, Canada Research Chair in Receptor Pharmacology at McGill and corresponding author of the study. "For example, drugs that alleviate anxiety, induce anesthesia, or even control epilepsy work by strengthening brain inhibition. These pharmacological approaches can have their drawbacks, since patients often complain of unpleasant side effects."

The experiments showed an unexpected link between how the mitochondria of brain cells make energy and how the same cells signal information. Brain cells couple these two independent functions by using small chemical messengers, called (or ROS), that are normally associated with signaling cell death. While ROS are known to have roles in diseases of aging, such as Alzheimer's and Parkinson's, the new study shows they also play important roles in the healthy brain.

The findings emerged from an ongoing collaboration between Prof. Bowie's laboratory in McGill's Department of Pharmacology and Therapeutics and a research team headed by Dr. Jean-Marc Fritschy, Professor of Pharmacology at the University of Zurich and current director of the Neuroscience Center Zurich (ZNZ). The researchers have the longer term aim of trying to understand why the seizures of many —especially young children – can be treated with a high-fat, low-carbohydrate diet known as the ketogenic diet.

The idea that diet can control seizures was noticed as far back as ancient Greece, during periods of fasting. From the 1920s until the 1950s, the ketogenic diet was widely used to treat epilepsy patients. With the introduction of anticonvulsant drugs in the 1950s, the dietary approach fell out of favour with doctors. But because anticonvulsant drugs don't work for 20% to 30% of patients, there has been a resurgence in use of the .

"Since our study shows that have their own means to strengthen inhibition," explains Prof Bowie, "our work points to potentially new ways in which to control a number of important neurological conditions including epilepsy."

Related Stories

A new role for sodium in the brain

Aug 20, 2013

Researchers at McGill University have found that sodium – the main chemical component in table salt – is a unique "on/off" switch for a major neurotransmitter receptor in the brain. This receptor, known ...

Fasting may benefit patients with epilepsy, study suggests

Dec 07, 2012

Children with persistent and drug-resistant seizures treated with the high-fat, low-carbohydrate ketogenic diet may get an added therapeutic benefit from periodic fasting, according to a small Johns Hopkins Children's Center ...

Recommended for you

'Microlesions' in epilepsy discovered by novel technique

19 hours ago

Using an innovative technique combining genetic analysis and mathematical modeling with some basic sleuthing, researchers have identified previously undescribed microlesions in brain tissue from epileptic ...

Thumbs-up for mind-controlled robotic arm (w/ Video)

20 hours ago

A paralysed woman who controlled a robotic arm using just her thoughts has taken another step towards restoring her natural movements by controlling the arm with a range of complex hand movements.

The sense of smell uses fast dynamics to encode odors

23 hours ago

Neuroscientists from the John B. Pierce Laboratory and Yale School of Medicine have discovered that mice can detect minute differences in the temporal dynamics of the olfactory system, according to research ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.