Scientists develop an engineered cardiac tissue model to study the human heart

When it comes to finding cures for heart disease scientists are working to their own beat. That's because they may have finally developed a tissue model for the human heart that can bridge the gap between animal models and human patients. These models exist for other organs, but for the heart, this has been elusive. Specifically, the researchers generated the tissue from human embryonic stem cells with the resulting muscle having significant similarities to human heart muscle. This research was published in the February 2014 issue of The FASEB Journal.

"We hope that our human engineered cardiac tissues will serve as a platform for developing reliable models of the human heart for routine laboratory use," said Kevin D. Costa, Ph.D., a researcher involved in the work from the Cardiovascular Cell and Tissue Engineering Laboratory, Cardiovascular Research Center, Icahn School of Medicine at Mt. Sinai, in New York, NY. "This could help revolutionize cardiology research by improving the ability to efficiently discover, design, develop and deliver new therapies for the treatment of heart disease, and by providing more efficient screening tools to identify and prevent cardiac side effects, ultimately leading to safer and more effective treatments for patients suffering from ."

To make this advance, Costa and colleagues cultured human engineered cardiac , or hECTs, for 7-10 days and they self-assembled into a long thin strip that pulled on the end-posts and caused them to bend with each heart beat, effectively exercising the tissue throughout the culture process. These hECTs displayed spontaneous contractile activity in a rhythmic pattern of 70 beats per minute on average, similar to the human heart. They also responded to electrical stimulation. During functional analysis, some of the responses known to occur in the natural adult human heart were also elicited in hECTs through electrical and pharmacological interventions, while some paradoxical responses of hECTs more closely mimicked the immature or newborn human heart. They also found that these human engineered heart tissues were able to incorporate new genetic information carried by adenovirus.

"We've come a long way in our understanding of the ," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but we still lack an adequate tissue model which can be used to test promising therapies and model deadly diseases. This advance, if it proves successful over time, will beat anything that's currently available."

More information: Irene C. Turnbull, Ioannis Karakikes, Gregory W. Serrao, Peter Backeris, Jia-Jye Lee, Chaoqin Xie, Grant Senyei, Ronald E. Gordon, Ronald A. Li, Fadi G. Akar, Roger J. Hajjar, Jean-Sébastien Hulot, and Kevin D. Costa. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. February 2014 28:644-654; DOI: 10.1096/fj.13-228007

add to favorites email to friend print save as pdf

Related Stories

Toward fixing damaged hearts through tissue engineering

Jan 22, 2014

In the U.S., someone suffers a heart attack every 34 seconds—their heart is starved of oxygen and suffers irreparable damage. Engineering new heart tissue in the laboratory that could eventually be implanted into patients ...

Scientists build a living patch for damaged hearts

May 06, 2013

Duke University biomedical engineers have grown three-dimensional human heart muscle that acts just like natural tissue. This advancement could be important in treating heart attack patients or in serving as a platform for ...

Hybrid heart valve is strong, durable in early tests

Nov 18, 2013

A hybrid heart valve created from thin and highly elastic mesh embedded within layers of human cells was strong and durable in a study presented at the American Heart Association's Scientific Sessions 2013.

Recommended for you

Gene variant raises risk for aortic tear and rupture

Apr 17, 2014

Researchers from Yale School of Medicine and Celera Diagnostics have confirmed the significance of a genetic variant that substantially increases the risk of a frequently fatal thoracic aortic dissection or full rupture. ...

Considerable variation in CT use in ischemic stroke

Apr 17, 2014

(HealthDay)—For patients with ischemic stroke there is considerable variation in the rates of high-intensity computed tomography (CT) use, according to a study published online April 8 in Circulation: Ca ...

Beating the clock for ischemic stroke sufferers

Apr 17, 2014

A ground-breaking computer technology raises hope for people struck by ischemic stroke, which is a very common kind of stroke accounting for over 80 per cent of overall stroke cases. Developed by research experts at The Hong ...

User comments