Research reveals why diabetes patients are at risk for microvascular complications

February 4, 2014

Patients with diabetes are at increased risk of microvascular complications, which develop when the body's small blood vessels become diseased. One of the most common problems results when wounds fail to heal properly, which can lead to ulcers, chronic infections, and in the most serious cases, limb amputations.

Now investigators from Beth Israel Deaconess Medical Center (BIDMC) have discovered that a molecule called PGC-1alpha—which has previously been shown to spur the growth of blood vessels in muscle—has the opposite effect in the endothelial cells of patients with diabetes, impairing blood vessel growth and leading to dangerous vascular complications.

Reported on-line today in the journal Cell Metabolism, the new findings not only help explain the molecular mechanisms underlying microvascular disease in diabetes patients, they also suggest that because PGC-1alpha has opposing effects in different cell types, its role as a potential new therapeutic target should be pursued with caution.

"Diabetes is the number one cause of amputations in the U.S.," explains senior author Zoltan Arany, MD, PhD, an investigator in BIDMC's CardioVascular Institute and Associate Professor of Medicine at Harvard Medical School (HMS). "While it's been believed that high levels of glucose were somehow to blame for the inability of chronic ulcers and infections to properly heal in these patients, it wasn't completely understood how this was happening."

With this new research, says Arany, it is apparent that high levels of blood glucose—the hallmark of diabetes—induces high levels of the PGC-1 alpha molecule in the endothelial cells lining the blood vessels. This, in turn, prevents endothelial cells from properly functioning, inhibiting blood vessel growth.

Arany's laboratory has studied PGC-1 alpha for more than a decade. Among the molecule's diverse roles, he has discovered that when body parts are jeopardized by poor circulation, PGC-1 alpha senses dangerously low levels of oxygen and nutrients in and, in response, spurs the growth of new blood vessels, a process known as angiogenesis.

"In muscle cells, we've found that PGC-1alpha is pro-metabolic, and a critical regulator of angiogenesis," he explains. "But the key cells responsible for carrying out angiogenesis are the endothelial cells that line the blood vessels. We, therefore, decided to investigate the role of endothelial PGC-1 alpha in diabetes."

Through a series of cell culture experiments, as well as experiments in endothelial-specific genetic mouse models, the authors showed that PGC-1alpha in endothelial cells is induced by diabetes, which strongly inhibits endothelial migration and angiogenesis, and leads to vascular dysfunction.

"These findings were definitely surprising, because the effects of PGC-1 alpha in endothelial cells are the opposite of its effects in muscle cells," notes Arany. "In muscle , it's pro-metabolic and will call forth more and come to the rescue when an injury or artery blockage leaves normal tissue starved for blood." But, he adds, it's now clear that this molecule behaves quite differently in , preventing in diabetes patients and preventing wounds from healing.

"This isn't just interesting and paradoxical, it's a potentially very important finding that reminds us that the same molecule can do different things in different cell types," adds Arany, explaining that if you make a medication that targets a particular pathway, it could potentially have positive effects in one tissue or cell type, but negative effects in another.

"PGC-1 alpha is generally considered a 'good' molecule in terms of improving health when it's activated," he adds. "But as these findings show, this isn't the case in the vasculature – activation leads to potentially serious problems. This striking observation stresses the need for caution, for example, when designing drugs aimed at PGC-1 alpha."

Related Stories

Research findings breathe new life into lung disease

October 24, 2012

It turns out the muscle cells on the outside of blood vessels have been wrongly accused for instigating lung disease. New research shows that while these muscle cells are responsible for constricting or dilating the blood ...

Researchers discover molecule behind the benefits of exercise

January 7, 2014

While it's clear that exercise can improve health and longevity, the changes that occur in the body to facilitate these benefits are less clear. Now researchers publishing in the January issue of Cell Press journal Cell Metabolism ...

Discovery of an early predictor of increased diabetes risk

January 15, 2014

A Montréal research team led by Jennifer Estall at the IRCM discovered that a protein found in muscle tissue may contribute to the development of type 2 diabetes later in life. The study's results, published in today's printed ...

Recommended for you

Crystal clear images uncover secrets of hormone receptors

July 31, 2015

Many hormones and neurotransmitters work by binding to receptors on a cell's exterior surface. This activates receptors causing them to twist, turn and spark chemical reactions inside cells. NIH scientists used atomic level ...

A cheaper, high-performance prosthetic knee

July 30, 2015

In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable ...

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.