A more efficient production process for influenza vaccines could help to cope with future pandemics

A more efficient production process for influenza vaccines could help to cope with future pandemics
Electron micrograph of a virus-like particle-based influenza vaccine magnified 100,000 times. Credit: A*STAR Institute of Molecular and Cell Biology

Influenza pandemics, such as the 2009 H1N1 'swine flu' outbreak, pose a serious risk to the global population. Vaccination is one route to protection but current manufacturing methods for vaccines limit the volume and speed of production. Now, an international team of researchers including A*STAR's Program in Translational Research on Infectious Disease, Experimental Therapeutics Centre and Singapore Immunology Network, has developed a more efficient production process.

In 2009, it took five months for the vaccine against the H1N1 virus to become available, and the number of doses made was sufficient for only a fraction of the . Both shortfalls were down to the conventional vaccine production process and so the research team wanted to develop a more efficient technique.

"The licensed H1N1 is made by growing the in chicken eggs," explains David Skibinski, the study's lead author. In comparison, "our vaccine is produced by expressing the main surface antigen of influenza in bacteria."

The researchers attached the antigen—part of a protein from the surface of the H1N1 virus—to harmless virus-like particles and injected them into mice. Compared with the mice that were inoculated with the licensed vaccine, animals inoculated with the new vaccine produced a similar number of effective antibodies against the H1N1 virus, which demonstrated that the new production method provided immunity as effectively as the existing vaccine.

There was, however, an extra advantage: mice that were inoculated with the new vaccine produced more T cells than mice that were inoculated with the licensed vaccine. T cells play an important role in protecting the body against influenza, reduce the severity of the disease, and provide protection against different strains of the virus.

Skibinski says the new way of producing the could improve the global response to future pandemics by shortening the time between the emergence of a virus and production of a functional vaccine, thus enabling individuals to be vaccinated before they become infected. "Greater cost-efficiency and yields would also enable many smaller or developing nations to manufacture their own vaccine," adds Skibinski.

Having shown the new vaccine's effectiveness in mice, the research team's next step was to see if the findings could be transferred to humans. So far, the results are positive, reports Skibinski. "A clinical trial in humans under the direction of the A*STAR D3 unit has demonstrated that the is safe, well tolerated and induces antibody responses comparable to those of approved seasonal influenza vaccines."

More information: Skibinski, D. A. G., Hanson, B. J., Lin, Y., von Messling, V., Jegerlehner, A. et al. "Enhanced neutralizing antibody titers and Th1 polarization from a novel Escherichia coli derived pandemic influenza vaccine." PLoS ONE 8, e76571 (2013). dx.doi.org/10.1371/journal.pone.0076571

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

FDA OKs Cubist antibiotic for serious infections

Dec 20, 2014

The Food and Drug Administration has approved a new medicine to fight complex infections in the abdomen and urinary tract, the fourth antibiotic the agency has approved since May.

Xtoro approved for swimmer's ear

Dec 18, 2014

(HealthDay)—Xtoro (finafloxacin otic suspension) eardrops have been approved by the U.S. Food and Drug Administration to treat swimmer's ear, clinically known as acute otitis externa.

Drug interaction identified for ondansetron, tramadol

Dec 18, 2014

(HealthDay)—In the early postoperative period, ondansetron is associated with increased requirements for tramadol consumption, according to a review and meta-analysis published online Dec. 10 in Anaesthesia.

New system targets germs in donated blood plasma

Dec 17, 2014

(HealthDay)—A new system designed to eliminate germs in donated blood plasma and reduce the risk of transmitting a plasma-borne infection has been approved by the U.S. Food and Drug Administration.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.