Research brings significant improvement in genetic analysis of tumours

by Ilona Van Den Brink

Every tumour is unique and requires specific treatment. A thorough and complete analysis of the genetic activity in the tumour cells is necessary to determine the appropriate treatment. Researchers at TU Delft, in collaboration with researchers from Columbia University and the Antoni van Leeuwenhoek Hospital have achieved significant improvements in this type of analysis. The results were published on 4 and 10 April in the scientific journals PNAS and PLOS Genetics.

One way of identifying new cancer genes is to use viruses. They can insert their into the DNA of an organism, for example in mice. These changes in the genetic material – mutations – cause certain tumours to develop in the mice. By carrying out a genetic analysis of the tumours and identifying the mutations, it is possible to discover which genes caused a .

Gene expression analysis

'We combined this technique with analysis', explains Dr Jeroen de Ridder, a bioinformatics specialist at the Delft Bioinformatics Lab of TU Delft. 'The shows the activity of all genes in the tumour. We can see whether a certain gene is switched 'on' or 'off', or in between. This means we can characterise precisely how mutations affect the activity of the genes in the tumour.'

De Ridder adds: 'This research principle is not new, but the added value of the recent advances is the completeness of the analysis.' At Delft, our work has focussed on the informatics side of the research. Using a regression model we can now identify the effect of a mutation on all genes at the same time. This has provided many new insights into the effect of mutations on gene activity. In addition, by means of statistical analyses and the use of existing data sets, greater insight has been gained into which parts of the DNA are susceptible to mutations of this type. On that basis we reached the conclusion that current analysis methods relatively often produce incorrect results.

'In the medical world there is an increasing awareness that each tumour is unique and therefore in fact requires specific treatment. Our method increases the possibilities and the understanding required to develop individual treatment for each tumour.'

More information: "Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis." Eunjee Lee, Jeroen de Ridder, Jaap Kool, Lodewyk F. A. Wessels, Harmen J. Bussemaker . PNAS 2014 ; published ahead of print April 2, 2014. www.pnas.org/content/early/201… 293111.full.pdf+html

"Chromatin Landscapes of Retroviral and Transposon Integration Profiles." Johann de Jong, Waseem Akhtar, Jitendra Badhai, Alistair G. Rust, Roland Rad, John Hilkens, Anton Berns, Maarten van Lohuizen, Lodewyk F. A. Wessels, Jeroen de Ridder. PLOS Genetics. Published: April 10, 2014.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Pancreatic cancer risk not higher with diabetes Rx DPP-4i

33 minutes ago

(HealthDay)—There is no increased short-term pancreatic cancer risk with dipeptidyl-peptidase-4 inhibitors (DPP-4i) compared to sulfonylureas (SU) and thiazolidinediones (TZD) for glycemic control, according ...

Good bowel cleansing is key for high-quality colonoscopy

3 hours ago

The success of a colonoscopy is closely linked to good bowel preparation, with poor bowel prep often resulting in missed precancerous lesions, according to new consensus guidelines released by the U.S. Multi-Society Task ...

New rules for anticancer vaccines

4 hours ago

Scientists have found a way to find the proverbial needle in the cancer antigen haystack, according to a report published in The Journal of Experimental Medicine.

Mesothelioma risk endures over long-term

5 hours ago

Western Australian researchers have determined the risk of developing mesothelioma continues to increase even 40 years after a person's first exposure to asbestos.

User comments