One cell's meat is another cell's poison

The loss of JAK2 is advantageous for leukemia cells. Credit: Sabine Fajmann / Vetmeduni Vienna

As a new therapeutic approach, Janus kinases are currently in the limelight of cancer research. The focus of interest is the protein JAK2. By inhibiting this protein one tries to cure chronic bone marrow diseases, such as myelofibrosis and chronic myeloid leukemia (CML).

Loss of JAK2 is advantageous for leukemia cells

Scientists working with Veronika Sexl at the Institute of Pharmacology and Toxicology may initiate a transformation of thought in regard of JAK2 inhibition. To simulate the human disease as accurately as possible, the scientists used a mouse leukemia model. In an experiment, mice received blood cancer cells as well as healthy hematopoietic stem cells in which JAK2 had been removed. "In mice, the absence of JAK2 accelerated the course of leukemia drastically," the scientists concluded.

The loss of JAK2 caused healthy to disappear in mice. "Leukemic cells, on the other hand, remained entirely unaffected; they do not need JAK2. This led to an imbalance in which the number of was very predominant, and eventually caused the acceleration of leukemia," says Eva Grundschober, one of the lead authors.

"The oncogene BCR-ABL, which was present in mice with leukemia, does not appear to require JAK2 for its activity. However, JAK2 is essential for ," explains Andrea Hölbl-Kovacic, the other lead author.

JAK2 is important for survival of hematopoietic stem cells

A closer investigation of healthy stem cells supports this hypothesis. In the absence of JAK2, healthy stem cells cannot survive and reproduce blood cells. As the next step, the following question will be raised in Sexl's laboratory: how does JAK2 mediate its life-sustaining effect on healthy stem cells? What portions of the JAK2 protein are required for this purpose and are these affected by current therapies?

More information: The article "Acceleration of Bcr-Abl+ leukemia induced by deletion of JAK2", by Eva Grundschober, Andrea Hölbö-Kovacic, Neha Bhagwat, Boris Kovacic, Ruth Scheicher, Eva Eckelhart, Karoline Kollmann, Matthew Keller, Florian Grebien, Kay-Uwe Wagner, Ross L. Levine and Veronika Sexl was published today in the journal Leukemia. DOI: 10.1038/leu.2014.152

add to favorites email to friend print save as pdf

Related Stories

Unraveling tumor growth one stem cell at a time

Jun 04, 2013

Researchers at the University of Cambridge have discovered that a single mutation in a leukemia-associated gene reduces the ability of blood stem cells to make more blood stem cells, but leaves their progeny daughter cells ...

Jak of all trades? Not of leukaemia therapy

Jan 30, 2012

About one in five or six cases of adult leukaemia in Western populations relates to so-called chronic myeloid leukaemia, or CML. Treatment of CML usually relies on inhibitors of the abnormal protein that causes the condition ...

Recommended for you

Discovery could lead to new cancer treatment

Aug 29, 2014

A team of scientists from the University of Colorado School of Medicine has reported the breakthrough discovery of a process to expand production of stem cells used to treat cancer patients. These findings could have implications ...

Is the HPV vaccine necessary?

Aug 29, 2014

As the school year starts in full swing many parents wonder if their child should receive the HPV vaccine, which is recommended for girls ages 11-26 and boys 11-21. There are a lot of questions and controversy around this ...

User comments