Creatures of habit: Disorders of compulsivity share common pattern and brain structure

May 29, 2014
Person washing hands (cropped image). Credit: Dave 77459

People affected by binge eating, substance abuse and obsessive compulsive disorder all share a common pattern of decision making and similarities in brain structure, according to new research from the University of Cambridge.

In a study published in the journal Molecular Psychiatry and primarily funded by the Wellcome Trust, researchers show that people who are affected by disorders of compulsivity have lower grey matter volumes (in other words, fewer nerve cells) in the brain regions involved in keeping track of goals and rewards.

In our daily lives, we make decisions based either on habit or aimed at achieving a specific goal. For example, when driving home from work, we tend to follow habitual choices – our 'autopilot' mode – as we know the route well; however, if we move to a nearby street, we will initially follow a 'goal-directed' choice to find our way home – unless we slip into autopilot and revert to driving back to our old home. However, we cannot always control the process and make repeat choices even when we know they are bad for us – in many cases this will be relatively benign, such as being tempted by a cake whilst slimming, but extreme cases it can lead to disorders of compulsivity.

In order to understand what happens when our decision-making processes malfunction, a team of researchers led by the Department of Psychiatry at the University of Cambridge compared almost 150 individuals with disorders including methamphetamine dependence, obesity with and , comparing them with of the same age and gender.

Study participants first took part in a computerised task to test their ability to make choices aimed a receiving a reward over and above making compulsive choices. In a second study, the researchers compared brain scans taken using (MRI) in healthy individuals and a subset of obese individuals with or without (a subtype of obesity in which the person binge eats large amounts of food rapidly).

The researchers demonstrated that all of the disorders were connected by a shift away from goal-directed behaviours towards automatic habitual choices. The MRI scans showed that obese subjects with binge eating disorder have lower grey matter volumes – a measure of the number of neurons – in the orbitofrontal cortex and striatum of the brain compared to those who do not binge eat; these are involved in keeping track of goals and rewards. Even in healthy volunteers, lower volumes were associated with a shift towards more habitual choices.

Dr Valerie Voon, principal investigator of the study, says: "Seemingly diverse choices – drug taking, eating quickly despite weight gain, and compulsive cleaning or checking – have an underlying common thread: rather that a person making a choice based on what they think will happen, their choice is automatic or habitual.

"Compulsive disorders can have a profoundly disabling effect of individuals. Now that we know what is going wrong with their decision making, we can look at developing treatments, for example using psychotherapy focused on forward planning or interventions such as medication which target the shift towards habitual choices."

Explore further: Study shows role of cellular protein in regulation of binge eating

More information: Voon, V et al. Disorders of compulsivity: a common bias towards learning habits. Molecular Psychiatry; E-pub 20 May 2014

Related Stories

Brain size may signal risk of developing an eating disorder

August 22, 2013

New research indicates that teens with anorexia nervosa have bigger brains than teens that do not have the eating disorder. That is according to a study by researchers at the University of Colorado's School of Medicine that ...

Researchers ID a brain mechanism that weighs decisions

February 5, 2014

We tend to be creatures of habit. In fact, the human brain has a learning system that is devoted to guiding us through routine, or habitual, behaviors. At the same time, the brain has a separate goal-directed system for the ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.