Sleep loss causes brain vulnerability to toxic elements

June 10, 2014

To answer the question of why we have to sleep, research conducted at the Mexican Metropolitan Autonomous University (UAM) revealed that chronic sleep loss can cause certain neurotoxic molecules, which normally circulate in the blood, to be transported to the central nervous system and interfere with the function of neurons.

Beatriz Gómez González, professor and researcher at UAM and head of the scientific project, explained that this arises due to an alteration in the central called blood-brain barrier, which is the component responsible for protecting the brain from potentially neurotoxic agents.

Through the induction of on some animals, the specialist at UAM and his staff corroborated that during periods of insomnia, joints vessels in the blood-brain barrier began to degrade. "We observed that some elements could cross that barrier and reach the brain tissue itself," explained the researcher.

By entering the brain, some nerve agents could potentially affect and even promote neuron death. For example, the specialist said, an agent called monosodium glutamate found in a wide range of processed foods may cause neuronal damage by overactivation of these cells (excitotoxicity), although the range of neurotoxic agents circulating in the blood is very extensive.

Furthermore, the research group at UAM studied the risks that could arise as a result of the administration of some drugs to the increased permeability of the blood-brain barrier induced by chronic sleep loss. Gómez González said that, based on some studies, it has been confirmed that some second-generation antihistamines permeate into the brain tissue when this phenomenon occurs.

"Although manufacturers of antibiotic drugs or second-generation antihistamines ensure that these do not affect brain function, there is evidence that these may impact on the when there is an increase in the permeability of the ," said the researcher. This phenomenon may cause some unwanted excitotoxicity effects in neurons, drowsiness, behavioral changes and even neuronal death.

Another phenomenon reported by researchers at UAM, with the induction of sleep loss in animals is the increased number of pinocytotic vesicles in cells. These relate to certain folds of a cell elements and capture materials found in the bloodstream; but this phenomenon may increase the risk of neurotoxic elements entering the . "The animals that have been induced sleeplessness develop up to three times these vesicles compared to animals in natural state."

Related Stories

Sleep to protect your brain

December 31, 2013

A new study from Uppsala University, Sweden, shows that one night of sleep deprivation increases morning blood concentrations of NSE and S-100B in healthy young men. These molecules are typically found in the brain. Thus, ...

Team moves small-molecule drugs through blood-brain barrier

June 4, 2014

Researchers at Mayo Clinic have demonstrated in a mouse model that their recently developed synthetic peptide carrier is a potential delivery vehicle for brain cancer chemotherapy drugs and other neurological medications. ...

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.