Getting rid of old mitochondria: Some neurons turn to neighbors to help take out the trash

June 16, 2014
Getting rid of old mitochondria
Pictured is mouse optic nerve and retina, responsible for relaying information from the eye to the brain. The tissue has been fluorescently stained to reveal the distribution of astrocytes (yellow), retinal ganglion cell axons (purple), myelin (green) and nuclei (cyan). Retinal ganglion cell axons transfer mitochondria to adjacent astrocytes in the optic nerve head behind the retina. Astrocytes degrade the mitochondria in a process called transmitophagy. Credit: Mark Ellisman, NCMIR, UC San Diego.

It's broadly assumed that cells degrade and recycle their own old or damaged organelles, but researchers at University of California, San Diego School of Medicine, The Johns Hopkins University School of Medicine and Kennedy Krieger Institute have discovered that some neurons transfer unwanted mitochondria – the tiny power plants inside cells – to supporting glial cells called astrocytes for disposal.

The findings, published in the June 17 online Early Edition of PNAS, suggest some basic biology may need revising, but they also have potential implications for improving the understanding and treatment of many neurodegenerative and .

"It does call into question the conventional assumption that cells necessarily degrade their own organelles. We don't yet know how generalized this process is throughout the brain, but our work suggests it's probably widespread," said Mark H. Ellisman, PhD, Distinguished Professor of Neurosciences, director of the National Center for Microscopy and Imaging Research (NCMIR) at UC San Diego and co-senior author of the study with Nicholas Marsh-Armstrong, PhD, in the Department of Neuroscience at Johns Hopkins University and the Hugo W. Moser Research Institute at Kennedy Krieger Institute in Baltimore.

"The discovery of a standard process for transfer of trash from neuron to glia will most likely be very important to understanding age-related declines in function of the brain and neurodegenerative or metabolic disorders," Marsh-Armstrong said. "We expect the impact to be significant in other areas of biomedicine as well."

The researchers looked specifically at the axons of in mice, a type of neuron that transmits visual information from the eye to the brain. The investigation was prompted by observations by Marsh-Armstrong while studying a mouse model of glaucoma that protein products from the retina were accumulating in the (ONH) just behind the eye.

Using a combination of advanced microscopy and molecular techniques developed at the Ellisman and Marsh-Armstrong laboratories, they discovered that damaged mitochondria in retinal ganglion cells were shed at the ONH where ganglion cell axons exit the eye to form the leading to the brain. These mitochondria were taken up and degraded by adjacent astrocytes, the most abundant form of glial cell in the vertebrate nervous system and the only cell which bridges between nerve cells and the brain's blood supply.

The discovery refutes the common assumption that all cells internally isolate, degrade and remove damaged materials – a process generally known as autophagy (Greek for "to self-eat"). When the process involves mitochondria, it's called mitophagy. The process described by Marsh-Armstrong, Ellisman and colleagues has been dubbed "transmitophagy."

The surprising findings still leave questions to be answered. For example, do the removed at the ONH originate only from the population residing in the long conducting nerve fibers from the eye to the brain or are some actively transported from the retina itself?

Ellisman said the findings could potentially improve understanding – and perhaps eventually the treatment – of diverse disorders. "Mitochondria play prominent roles in the health of axons, which are fundamental to connecting neurons and transmitting information. It should be a priority to further explore what happens in transmitophagy and whether defects in this phenomenon contribute to neuronal dysfunction or disease."

Explore further: Can the eyes help diagnose Alzheimer's disease?

More information: Transcellular degradation of axonal mitochondria, PNAS,

Related Stories

Can the eyes help diagnose Alzheimer's disease?

November 13, 2013

An international team of researchers studying the link between vision loss and Alzheimer's disease report that the loss of a particular layer of retinal cells not previously investigated may reveal the disease's presence ...

New role for glial cells during neuroinflammation

December 17, 2013

Astroglial cells in the adult brain play fundamental roles in supporting neuronal functioning and in regulating brain energy balance. A new study now has identified key regulators that allow astrocytes to keep their mitochondrial ...

Overlooked cells hold keys to brain organization and disease

April 28, 2014

Scientists studying brain diseases may need to look beyond nerve cells and start paying attention to the star-shaped cells known as "astrocytes," because they play specialized roles in the development and maintenance of nerve ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.