Researchers: tamoxifen's power comes from endoxifen

December 11, 2008

Mayo Clinic researchers have discovered that a chemical known as endoxifen appears to be the primary metabolite responsible for the effectiveness of tamoxifen in treating breast cancer, and that it works against cancer in an entirely unexpected way.

Their study, being presented at the Cancer Therapy & Research Center-American Association for Cancer Research (CTRC-AACR) 31st annual San Antonio Breast Cancer Symposium, finds that, in contrast to the other tamoxifen metabolites, endoxifen degrades the estrogen receptor, and inhibits the growth of breast cancer cells even when tamoxifen is present. These new findings are believed to be the most definite laboratory analysis yet on how tamoxifen and its two main metabolites - endoxifen and 4HT (4-hydroxytamoxifen) -act against breast cancer.

"Tens of thousands of women in this country are prescribed tamoxifen for either treatment or prevention of breast cancer, and while it has shown remarkable success, it does not work for a substantial number of patients," says the study's lead investigator, John Hawse, Ph.D. "These findings increase our understanding of tamoxifen and, we hope, could pave the way for improved therapies."

Tamoxifen is designed to treat estrogen-receptor positive breast cancer (70-80 percent of all breast cancer) because this receptor fuels the cancer's growth. But tamoxifen is a "pro-drug," which means that it is relatively inactive until converted into active "metabolites" - the 4HT and endoxifen chemicals that actually perform the work of the drug.

Researchers at Mayo Clinic earlier discovered that tamoxifen is less effective in women who had a deficiency in the enzyme CYP2D6, which is responsible for converting tamoxifen to endoxifen. The CYP2D6 gene is present in different forms in different people. A team of Mayo Clinic investigators, including Matthew Goetz, M.D., Matthew Ames, Ph.D., and James Ingle, M.D., have shown that women with certain variations in the CYP2D6 gene - so-called "poor metabolizers" - have a significantly higher risk of relapse when they take tamoxifen.

But it has been unclear which of tamoxifen's metabolites is most crucial to tamoxifen's effectiveness. Previous research suggested that both metabolites were similar.
To find the answer, Dr. Hawse, who works in the laboratory of molecular biologist Thomas Spelsberg, Ph.D., designed an in vitro model system for treating cancer cells with tamoxifen, 4HT, and endoxifen in amounts that mirrored doses found in women who were prescribed tamoxifen therapy.

The researchers were surprised to find that endoxifen actually degraded estrogen receptors in these cancer cells, thus slowing their growth.

"We all thought tamoxifen works by blocking the estrogen receptor so it can't bind to estrogen, but now we find that endoxifen actually degrades the estrogen receptor," Dr. Hawse says. "This goes a long way toward explaining why tamoxifen can be so effective in women who can effectively convert tamoxifen to endoxifen."

Dr. Hawse found that tamoxifen had little effect on the growth of the cancer cells. They also discovered that when they introduced into the cells a combination of estrogen and tamoxifen, the cells grew just as much as if they were given estrogen alone.

With endoxifen, the results were different. At low concentrations, such as would be seen in the blood of women who were poor metabolizers because of their CYP2D6 gene variant, there was little inhibition of cell growth. But at higher concentrations, similar to what good metabolizers produce, cancer growth drastically slowed and the estrogen receptor was degraded.

Adding the low concentrations of 4HT found in human blood to the cancer cells also had little effect, and cell growth also increased when estrogen was added. "This is not to say that 4HT is ineffective, but that the liver makes so little of it from tamoxifen that it can't work as well as it might if there was more of it," Dr. Hawse says.

"That was the evidence we needed," says Dr. Spelsberg. "It showed that tamoxifen is activated via the CYP2D6 enzyme into a completely different molecule that has a completely different mechanism of action from tamoxifen and even 4HT."

Based on these findings, the researchers say an agent that mimics endoxifen might be a better, more responsive drug than tamoxifen.

"These findings open the door to exploring the use of endoxifen as a drug that might be able to replace tamoxifen," says Dr. Goetz. "We believe it is the most potent metabolite, and we would not be restricted by CYP2D6's inability to metabolize it, or by limits on how much endoxifen the liver could make. It will take years before we know whether this is the case, but we are excited about the possibility."

Source: Mayo Clinic

Explore further: Z-endoxifen shows promise as new treatment for common breast cancer type

Related Stories

Z-endoxifen shows promise as new treatment for common breast cancer type

August 31, 2017
Z-endoxifen, a potent derivative of the drug tamoxifen, could itself be a new treatment for the most common form of breast cancer in women with metastatic disease. This finding was reported from a clinical trial conducted ...

First in-human trial of endoxifen shows promise as breast cancer treatment

December 12, 2013
A Phase I trial of endoxifen, an active metabolite of the cancer drug tamoxifen, indicates that the experimental drug is safe, with early evidence for anti-tumor activity, a Mayo Clinic study has found. The findings indicate ...

Cold winters freezing out breast cancer treatment

April 18, 2013
For women diagnosed with a form of breast cancer known as estrogen receptor positive (ER+) breast cancer, tamoxifen is an essential drug used in the treatment and prevention of recurring breast cancer. Currently, tamoxifen ...

Ability to metabolize tamoxifen affects breast cancer outcomes, study confirms

December 27, 2012
For nearly a decade, breast cancer researchers studying the hormone therapy tamoxifen have been divided as to whether genetic differences in a liver enzyme affect the drug's effectiveness and the likelihood breast cancer ...

Studies show that CYP2D6 genotype does not predict tamoxifen benefit

March 6, 2012
Two studies published March 6 in the Journal of the National Cancer Institute provide insights about the CYP2D6 genotype in postmenopausal breast cancer patients and represent a major step forward in understanding the usefulness ...

Analysis advances the individual response to treatment of breast cancer with tamoxifen

March 25, 2015
Tamoxifen is a prodrug widely used in the treatment of breast cancer, but the patient response to it depends on their ability to metabolize it into endoxifen. Researchers have developed a new method that allows, through a ...

Recommended for you

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Scientists restore tumor-fighting structure to mutated breast cancer proteins

September 20, 2017
Scientists at the Virginia Tech Carilion Research Institute have successfully determined the full architecture of the breast cancer susceptibility protein (BRCA1) for the first time. This three-dimensional information provides ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

Researchers identify new target, develop new drug for cancer therapies

September 20, 2017
Opening up a new pathway to fight cancer, researchers at the University of Pennsylvania have found a way to target an enzyme that is crucial to tumor growth while also blocking the mechanism that has made past attempts to ...

New clinical trial explores combining immunotherapy and radiation for sarcoma patients

September 20, 2017
University of Maryland School of Medicine researchers are investigating a new approach to treat high-risk soft-tissue sarcomas by combining two immunotherapy drugs with radiation therapy to stimulate the immune system to ...

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.