Baby's first dreams: Research reveals sleep cycles in early fetus

April 13, 2009
fetus
A 3D ultrasound taken of a fetus. Image: Wikimedia.

After about seven months growing in the womb, a human fetus spends most of its time asleep. Its brain cycles back and forth between the frenzied activity of rapid eye movement (REM) sleep and the quiet resting state of non-REM sleep. But whether the brains of younger, immature fetuses cycle with sleep or are simply inactive has remained a mystery, until now.

Mathematician Karin Schwab and a team of neuroscientists at Friedrich Schiller University in Jena, Germany, have discovered that very immature sheep fetuses can enter a dreaming sleep-like state weeks before the first rapid eye movements are seen. Their mathematical analysis could lead to a better of understanding of the purpose of . It also provides a tool to study how the develops and to identify vulnerable periods in when damage could lead to disease later in life.

The research appears in a special focus issue of the journal Chaos, which is published by the American Institute of Physics (AIP). The special issue is focused on nonlinear dynamics in cognitive and neural systems. It asks how chaos affects certain brain areas and presents interdisciplinary approaches to various problems in neuroscience -- including sleep.

Directly measuring the brain activity of a human fetus in the womb is impossible. What we know about our early sleep habits comes mostly from watching eye movements. Around the seventh month of a fetus' development, the first rapid eye movements are seen. The brain of the developing embryo appears to cycle every 20 to 40 minutes between REM sleep, in which brain activity rivals that of consciousness, and non-REM sleep, in which the brain rests. The functions of these sleep cycles are still a hotly debated topic in the world of sleep research.

Some have tried to measure the brain activity of by hooking them up to an electroencephogram (EEG) after they are born early. These measurements, according to Schwab, are technically difficult and fraught with errors. So neurologists who study the development of the fetal brain do not know whether sleep cycles simply appear one day, or whether they develop slowly from other forms of brain activity.

To fill this gap in knowledge, Schwab studied sheep, an animal that typically carries one or two fetuses similar in size and weight to a human fetus. The course of brain development is also fairly similar in humans and sheep, lasting about 280 days in humans and 150 days in sheep. They recorded electrical activity in the brain of a 106-day-old developing sheep fetus directly -- something that had never been done before.

Using sophisticated mathematical techniques for detecting patterns, Schwab discovered cycles in the complexity of immature brain activity. Unlike sleep patterns in later stages of development, these cycles fluctuate every 5 to 10 minutes and change slowly as the fetus grows.

While it is difficult to imagine what the fetus experiences during these cycles in terms familiar to adults, the patterns shed new light on the origins of sleep. "Sleep does not suddenly evolve from a resting brain. Sleep and sleep state changes are active regulated processes," says Schwab. The finding fits with other data showing that the brain cells (neurons) that generate sleep states mature long before the rest of the brain is developed enough to fall into REM sleep.

A better understanding of brain development could provide clues about diseases later in life, like neurological disorders or crib death. The research may also shed light on fundamental questions about how the brain develops. Cyclic changes in the activity of neurons, for instance, may stimulate the other nerve cells to find and connect with each other to set up complex networks in the brain. Sophisticated analyses of could help detect vulnerable phases during this brain development. Other avenues of Schwab's research look at the impact of environmental stimuli such as noise or stress on the developing fetus and whether they can lead to an increased susceptibility to disease in adults.

More information: The article "Nonlinear analysis and modeling of cortical activation and deactivation patterns in the immature fetal electrocorticogram," by K. Schwab et al was published March 31, 2009. [Chaos 19, 015111 (2009)]. The article is available at link.aip.org/link/?CHAOEH/19/015111/1.

Source: American Institute of Physics

Related Stories

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

M_N
2.3 / 5 (6) Apr 14, 2009
The pro-abortionists would have us believe that an unborn baby isn't human. This is just more evidence that they are WRONG.
AdseculaScientiae
not rated yet Apr 14, 2009
I don't think the people that are pro-abortion think an unborn baby isn't human, but they are pointing out that the EMBRYO'S are not and should not be seen as fullgrown humans which need human rights like we do. But saying they don't think it is of human origin, is just rubbish and completely stigmatizing.

On top of that, it is known that other species dream too, but does that make them human? This probably happens in their development in the womb too.
M_N
1 / 5 (1) Apr 14, 2009
You are correct that many pro-abortionists (but NOT all) DO recognise that an unborn baby is completely human, but STILL say that abortion is OK. IMO, this is even worse than refusing to recognise that an unborn baby is human.

As for the law, in most juristictions the unborn baby is NOT recognised as a human being (ie, killing it does not have the same implications as killing a baby that has already been born).

At what point does an EMBRYO become a baby / foetus? I think you will find that the line is rather murky. In any case, millions of the unborn babies that are killed each year are way past the point where almost everyone would admit that they are unmistakedly "human".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.