Protein-protein interaction explains vision loss in genetic diseases

May 10, 2009,

The mystery of genetic disease is only partially solved with the identification of a mutated gene. Often, the pattern of disease - the features or disorders associated with it - vary in type and severity among those who are affected. Scientists, physicians and patients all ask why.

In this week's journal , an international consortium of researchers, including some from Baylor College of Medicine, provide not only an explanation for the variations of in people with a host of disorders associated with defective cilia within the cells, but also a blueprint for unraveling similar variations in signs among people with other .

In particular, this report deals with a variant of the gene RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in at least two inherited diseases (Meckel-Gruber and Joubert syndromes). However, the researchers showed that, when people who have similar diseases that are caused by different gene mutations affecting the cilia also have a particular variant of this gene, they also suffer more severe degeneration of the - the light-sensing part of the eye - and lose vision.

"When you look at a disorder such as Bardet-Biedl Syndrome with multiple features - extra and toes, retinitis pigmentosa (a vision disorder), asthma, obesity and kidney, you wonder how a single gene can interact or influence the expression of the other 25,000 or so that humans have," said Dr. Richard Lewis, professor of ophthalmology, medicine, pediatrics, and molecular and at BCM and an author of the report.

In Bardet-Biedl Syndrome, he and his collaborators first identified the fact that it takes three changes in gene copies to cause disease. So far, they have identified most of the 14 different mutated genes associated with the disorder. Most have something to do with the structure or function of cilia, he said.

Cilia are tiny hair-like structures that either move things along inside the cell or help with sensory activities.

"Anything that disrupts this elevator that runs things from one part of a cell to another has an effect on the severity of the disorder," Lewis said. Some mutated genes may alter the structure of the elevator shaft and the movement of the car up and down, but another gene could actually affect the speed at which the elevator moves, said Lewis. If the product of that gene varies also, then it affects the protein interaction and ultimately, the patient's ability to see.

The authors note in their article that this finding highlights the importance of a multifaceted, multidisciplinary approach to discovering genes and proteins that modify these outward or phenotypic effects of genetic disease. These authors meld the talents of clinicians caring for patients and families with gene hunters and scientists working to understand the function of genes and their products in different cells and tissues.

Source: Baylor College of Medicine (news : web)

Related Stories

Recommended for you

Widely used reference for the human genome is missing 300 million bits of DNA

November 19, 2018
For the past 17 years, most scientists around the globe have been using the nucleic acid sequence, or genome, an assembly of DNA information, from primarily a single individual as a kind of "baseline" reference and human ...

Mutation that causes autism and intellectual disability makes brain less flexible

November 19, 2018
About 1 percent of patients diagnosed with autism spectrum disorder and intellectual disability have a mutation in a gene called SETD5. Scientists have now discovered what happens on a molecular level when the gene is mutated ...

Progress in genetic testing of embryos stokes fears of designer babies

November 16, 2018
Recent announcements by two biotechnology companies have stoked fears that designer babies could soon be an option for those who can afford to pick and choose which features they want for their offspring. The companies, MyOme ...

Gene editing possible for kidney disease

November 16, 2018
For the first time scientists have identified how to halt kidney disease in a life-limiting genetic condition, which may pave the way for personalised treatment in the future.

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Ashkenazi Jewish founder mutation identified for Leigh Syndrome

November 15, 2018
Over 30 years ago, Marsha and Allen Barnett lost their sons to a puzzling childhood disease that relentlessly attacked their nervous systems and sapped their energy. After five-year-old Chuckie died suddenly in 1981, doctors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.