Protein-protein interaction explains vision loss in genetic diseases

May 10, 2009

The mystery of genetic disease is only partially solved with the identification of a mutated gene. Often, the pattern of disease - the features or disorders associated with it - vary in type and severity among those who are affected. Scientists, physicians and patients all ask why.

In this week's journal , an international consortium of researchers, including some from Baylor College of Medicine, provide not only an explanation for the variations of in people with a host of disorders associated with defective cilia within the cells, but also a blueprint for unraveling similar variations in signs among people with other .

In particular, this report deals with a variant of the gene RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in at least two inherited diseases (Meckel-Gruber and Joubert syndromes). However, the researchers showed that, when people who have similar diseases that are caused by different gene mutations affecting the cilia also have a particular variant of this gene, they also suffer more severe degeneration of the - the light-sensing part of the eye - and lose vision.

"When you look at a disorder such as Bardet-Biedl Syndrome with multiple features - extra and toes, retinitis pigmentosa (a vision disorder), asthma, obesity and kidney, you wonder how a single gene can interact or influence the expression of the other 25,000 or so that humans have," said Dr. Richard Lewis, professor of ophthalmology, medicine, pediatrics, and molecular and at BCM and an author of the report.

In Bardet-Biedl Syndrome, he and his collaborators first identified the fact that it takes three changes in gene copies to cause disease. So far, they have identified most of the 14 different mutated genes associated with the disorder. Most have something to do with the structure or function of cilia, he said.

Cilia are tiny hair-like structures that either move things along inside the cell or help with sensory activities.

"Anything that disrupts this elevator that runs things from one part of a cell to another has an effect on the severity of the disorder," Lewis said. Some mutated genes may alter the structure of the elevator shaft and the movement of the car up and down, but another gene could actually affect the speed at which the elevator moves, said Lewis. If the product of that gene varies also, then it affects the protein interaction and ultimately, the patient's ability to see.

The authors note in their article that this finding highlights the importance of a multifaceted, multidisciplinary approach to discovering genes and proteins that modify these outward or phenotypic effects of genetic disease. These authors meld the talents of clinicians caring for patients and families with gene hunters and scientists working to understand the function of genes and their products in different cells and tissues.

Source: Baylor College of Medicine (news : web)

Related Stories

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 10, 2009
PHYSICS is the science that deals with electron variation, action, and expression! Medicine seems to limit itself to whole atoms for explanation of organic expression and control. Understanding of the complex mechanics of living cells is electronic!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.