Autoinflammatory disease model reveals role for innate, not adaptive, immunity

June 4, 2009

Researchers at the University of California, San Diego School of Medicine have developed the first mouse model for auto-inflammatory diseases, disorders that involve the over-activation of the body's innate, primitive immune system. Their study, published early on-line in Cell Immunity on June 4, suggests that the innate - not adaptive - immune system drives auto-inflammatory diseases. The findings could open new therapeutic directions for research into disorders such as gout or inflammatory bowel disease.

"Auto-inflammatory diseases are a relatively new classification of diseases that are different from autoimmune diseases or allergies," said Hal Hoffman, MD, associate professor of medicine at UC San Diego School of Medicine. Hoffman studies a group of rare, inherited auto-inflammatory conditions called Cryopyrin-Associated Periodic Syndromes (CAPS), which includes Familial Cold Auto-inflammatory Syndrome (FCAS) and Muckle-Wells Syndrome (MWS).

Autoimmune diseases arise from an overactive response of the body's adaptive, or acquired, immune system against substances and tissues normally present in the body. Allergies are also a product of the adaptive immune system, but in response to environmental substances. Both involve the action of lymphocytes such as and . The older innate immune system, on the other hand, recruits immune cells to sites of infection and inflammation, but doesn't confer long-time protection. Pathogens evoke an inappropriate response that doesn't involve antibodies or lymphocytes.

With CAPS, Hoffman had earlier discovered that mutations of the NLRP3 gene caused the auto-inflammatory disease symptoms because the gene causes alterations in the protein called cryopyrin. Cryopyrin regulates the release of interleukin-1, an important mediator of fever and systemic inflammation during the body's innate immune response, and alterations in cryopyrin lead to over-production of Il-1.

Mutations in the NLRP3 gene are thought to result in inappropriate activation of a multi-protein complex called an inflammasome, leading to excessive Il-1β release and manifestation of CAPS disease symptoms. Treatment with Il-1β inhibitors reduces the inflammation and symptoms in auto-inflammatory diseases; however, NLRP3 may have other effects in addition to increased Il-1β.

"Patients treated with the Il-1β inhibitors got much better, but still exhibited some symptoms," said Hoffman.

In order to examine the role of inflammatory mediators and adaptive immune responses in CAPS, the researchers developed two NLRP3 mutant knock-in mouse models. (In "knock-in" models, genetic information is inserted into a particular part of the genome; in contrast to "knock-out" mouse models, in which genetic information is removed.) These mice had systemic and poor growth, similar to some human patients.

By mating these mice to mice with various gene mutant backgrounds, the scientists showed that CAPS requires an intact inflammasome, is only partially dependent on Il-1β and is independent of T cells. Their findings may help lead to more effective treatments for CAPS syndromes.

"The data shows that CAPS are true inflammasome-mediated diseases and that the adaptive is not necessary for this disease," said Hoffman.

"In the larger picture, our findings also suggest that innate and adaptive immune systems don't necessarily always 'cross talk' or communicate with one another."

According to the researchers, given the importance of IL-Β and the inflammasome to innate immunity, NLRP3 knock-in mice may be applied to the study of many diseases along the autoinflammatory-autoimmune spectrum.

Source: University of California - San Diego (news : web)

Related Stories

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.