Infant pain, adult repercussions

September 25, 2009

Scientists at Georgia State University have uncovered the mechanisms of how pain in infancy alters how the brain processes pain in adulthood.

Research is now indicating that infants who spent time in the neonatal intensive care unit (NICU) show altered pain sensitivity in adolescence. These results have profound implications and highlight the need for pre-emptive and post-operative pain medicine for newborn infants.

The study, published online in the journal Frontiers in Behavioral Neuroscience, sheds light on how the mechanisms of pain are altered after infant injury in a region of the brain called the periaqueductal gray, which is involved in the perception of pain.

Using Sprague-Dawley rats, Jamie LaPrairie, a graduate student in associate professor Anne Murphy's laboratory, examined why the brief experience of pain at the time of birth permanently decreased pain sensitivity in adulthood.

Endogenous opioid peptides, such as beta-endorphin and enkephalin, function to inhibit pain. They're also the 'feel good' substances that are released following high levels of exercise or love. Since these peptides are released following injury and act like morphine to dampen the experience of pain, LaPrairie and Murphy tested to see if the rats, who were injured at birth, had unusually high levels of endogenous opioids in adulthood.

To test this hypothesis, LaPrairie and Murphy gave adult animals that were injured at the time of birth a drug called . This drug blocks the actions of endogenous opioids. After animals received an injection of , they behaved just like an uninjured animal.

The scientists then focused on the periaqueductal gray region to see if inflammation at birth altered the natural opioid protein expression in this brain region. Using a variety of anatomical techniques, the investigators showed that animals that were injured at birth had endogenous opioid levels that were two times higher than normal.

While it's beneficial to decrease pain sensitivity in some cases, it's not good to be completely resilient to pain.

"Pain is a warning sign that something is wrong," Murphy explained. "For example, if your hand is in water that's too hot, pain warns you to remove it before tissue damage occurs."

Interestingly, while there is an increase in endorphin and enkephalin proteins in adults, there is also a big decrease in the availability of mu and delta opioid receptors. These receptors are necessary in order for pain medications, such as morphine, to work. This means that it takes more pain-relieving medications in order to provide relief as there are fewer available receptors in the brain. Studies in humans are reporting the same phenomenon.

The number of invasive procedures an infant experienced in the NICU is negatively correlated with how responsive the child is to morphine later in life; the more painful procedures an infant experienced, the less effective morphine is in alleviating pain.

The study by LaPrairie and Murphy has major implications for the treatment of infants in neonatal intensive care. On average, a prematurely born infant in a neonatal intensive care unit will experience 14 to 21 invasive procedures a day, including heel lance, insertion of intravenous lines, and intubation. All of these procedures are quite painful and are routinely conducted without prior analgesics or anesthetics.

"It's imperative that pain be treated," Murphy said. "We once assumed that a newborn infant is insensitive to pain, and this is clearly not the case. Even at that period of time, the central nervous system is able to respond to pain, and our studies show that the experience of completely changes the wiring of the brain in adulthood."

The next steps in Murphy's research include the study of how neonatal injury at birth alters stress responses, as well as the affects of infant injury on long-term learning and memory.

More information: The article, titled "Neonatal injury alters adult by increasing opioid tone in the periaqueductal gray," appears in the September 2009 edition of journal Frontiers in , Vol. 3, p. 1-11.

Source: Georgia State University (news : web)

Related Stories

Recommended for you

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Sep 25, 2009
This article should be mandatory reading for everyone involved with babies. They are sensitive to pain like adults probably long prior to being born.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.