Fluorescent co-enzyme is an early indicator for breast cancer

October 1, 2009 By Melissa-Beattie Moss
Fluorescent co-enzyme is an early indicator for breast cancer
Concentration of co-enzyme NADH within a single live cell. Image: Ahmed Heikal

(PhysOrg.com) -- Think back to high-school biology and you may recall some basics about cellular respiration: how organelles called mitochondria function like little power stations, converting nutrients from food into a high-powered cell fuel called adenosine triphosphate, or ATP.

ATP powers the activity of every cell -- and every living thing -- on Earth. Yet without a key called nicotinamide adenine dinucleotide (NADH), ATP could not be made.

NADH is aglow with good press these days for its potential use in helping cancer specialists differentiate between healthy and cancerous , especially in early disease stages.

Penn State associate professor of bioengineering, Ahmed Heikal, and his graduate student Qianru Yu, have made two intriguing discoveries about this enzyme. They pioneered a method for measuring NADH levels in living cells and then determined that NADH molecules, which are naturally fluorescent, are twice as prevalent in cells as they are in normal breast cells, a trait that could serve as an indicator of easily-missed early-stage malignancies.

Using a combination of and state-of-the-art , Heikal and Yu have found a way to convert NADH’s fluorescence into an accurate measure of its concentration in live cells, as a means of analyzing whether a cell’s metabolic and respiratory processes are healthy or damaged.

Normal cells are aerobic, Heikal said. Inside healthy mitochondria, both oxygen and NADH are essential to convert energy from nutrients into ATP. But some cancer cells (those in tumors, for example) are anaerobic. Their mitochondria are disabled, causing the voracious, rapidly-dividing to use a faster form of metabolism -- gylcolysis -- to turn sugar into energy without using oxygen. During this process, Heikal said, “the concentration of NADH inside these diseased cells increases.”

Heikal and Yu’s method of testing intracellular NADH levels offers several advantages over existing approaches.

“Conventional techniques require cell destruction,” said Heikal. “Studying living cells, non-invasively and under physiological conditions, is important because it allows us to understand how they function under diseased conditions. We can measure real-time dynamic changes with high spatial resolution as the cells respond to external stimulation from drugs, mechanical stress, or viral infection.”

One challenge that remains to be overcome, Heikal and Yu said, is that their technique uses ultrashort infrared laser, which penetrates only a fraction of a millimeter into biological tissues.

“This inherently limits our ability to monitor mitochondrial activities and NADH concentration deep in human tissues or organs,” Heikal said.

He predicts that new non-linear, fiber-based imaging techniques currently being developed in research laboratories around the world will provide the solution. If and when they do, the potential of this diagnostic tool “is limitless in both basic and applied research as well as in clinical setting,” Heikal said. “Our quantitative and non-invasive approach would be ideal in helping to diagnose a wide range of diseases,” including neurodegenerative conditions such as Alzheimer’s and Parkinson’s diseases, as well as cancer, and even aging. The same approach, he said, could be applied to study other fundamental questions in cell and molecular biology.

Provided by Pennsylvania State University (news : web)

Related Stories

Recommended for you

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

Testing the accuracy of FDA-approved and lab-developed cancer genetics tests

December 14, 2017
Cancer molecular testing can drive clinical decision making and help a clinician determine if a patient is a good candidate for a targeted therapeutic drug. Clinical tests for common cancer causing-mutations in the genes ...

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.