Heavy metal paradox could point toward new therapy for Lou Gehrig's disease

November 30, 2009,

New discoveries have been made about how an elevated level of lead, which is a neurotoxic heavy metal, can slow the progression of amyotrophic lateral sclerosis, or Lou Gehrig's disease - findings that could point the way to a new type of therapy.

The results surprised researchers, since lead is also a known risk factor for ALS. This paradox is still not fully understood, and at this point would not form the basis for a therapy, as lead is toxic for the nervous system. But scientists say the phenomenon may lead to promising alternative approaches to the gene therapies that are now a focus of study.

The research was just published in Neurobiology of Disease, a professional journal, by researchers from the Instituto Clemente Estable and the University of the Republic in Montevideo, Uruguay, and at Oregon State University. The research has been supported by the National Institutes of Health.

"We know that to lead is a risk factor for ALS," said Joseph Beckman, holder of the Ava Helen Pauling Chair in the Linus Pauling Institute and director of the Sciences Center at OSU. "That's why it's so surprising that, according to studies done with laboratory animals, higher levels of lead appear to significantly reduce motor neuron loss and progression of ALS."

Research will continue to explore the underlying mechanisms that may be causing this, Beckman said. But the findings also raise immediate questions about the wisdom of chelation therapy in efforts to treat ALS, which many people have tried despite no evidence that it works. Chelation therapy tries to remove from the body, including lead.

"Many people have spent thousands of dollars on chelation therapy to treat ALS, despite a lack of scientific evidence that heavy metals are causing the disease," Beckman said. "These findings about the potential of lead now raise concerns about the rationale for chelation therapy in treating ALS."

ALS is a progressive, fatal neurodegenerative disease that causes muscle weakness and atrophy throughout the body. There is no known cure, and it affects about 2-3 out of every 100,000 people each year.

According to Beckman, some of the findings about the role of lead in this disease evolved out of collaborative research OSU is doing with universities in Uruguay, where significant numbers of children from impoverished families are suffering from lead poisoning caused by setting up camps over abandoned lead factories near Montevideo.

"In this area there are huge problems with lead poisoning, mostly in children," Beckman said. "People are being exposed through their water, food, other environmental sources, and we've worked there for a number of years to learn more about the neurotoxicity of lead exposure."

Lead appears to have some interaction with astrocytes, Beckman said, a special type of cell that is believed to influence the spread of ALS. Astrocytes are a major component of brain cells and, in healthy systems, help to support neurons, defend them against infection and injury and remove neurons when they become damaged.

This delicate process, however, may get disrupted in ALS, at which point astrocytes are believed to play a role in causing inappropriate motor neuron death.

"These systems are very carefully balanced and many factors have to work together," Beckman said. "The proper functioning of astrocytes is essential to life, but their dysfunction may lead to disease. We think that lead somehow is modulating the neuroinflammatory actions of astrocytes and, in the case of ALS, helping to shift their balance back to one of protection, rather than damage."

When that happens, researchers say, it appears that astrocytes can stimulate the production of "vascular endothelial growth factor," which in turn protects . Researchers around the world see increases in this growth factor as a possible way to help treat ALS, and most work is now focused on gene therapies to accomplish that. More research is necessary to determine the mechanisms by which lead has this protective effect, which may help to identify pharmacological targets for the disease.

The levels of lead that were therapeutic in the mice have toxic risk in adult humans, the researchers pointed out. However, as more is learned about how lead is affecting ALS, alternatives to lead might be found to accomplish the same goal.

"Available evidence supports the view that astrocytes are key targets of lead and respond to it by inducing neuroprotective pathways," the researchers wrote in their report. "Our results suggest that lead activates a novel pathway able to reduce neuroinflammation and slow neurodegeneration in ALS."

Source: Oregon State University (news : web)

Related Stories

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.