Random fluctuations give rise to odd genetic phenomenon

February 17, 2010

(PhysOrg.com) -- For years, biologists have wondered how it is possible that not every person who carries a mutated gene expresses the trait or condition associated with the mutation. This common but poorly understood phenomenon, known as incomplete penetrance, exists in a wide range of organisms, including humans.

Many mutations in that are linked to diseases, including Parkinson's disease and , are incompletely penetrant. Some of this variation may be due to environmental factors and the influence of other genes, but not all: It has been shown that genetically identical organisms living in the same environment can show variability in some incompletely penetrant traits.

Now, a team of MIT biophysicists has demonstrated that some cases of incomplete penetrance are controlled by random fluctuations in gene expression.

"It's not just nature or nurture," says Alexander van Oudenaarden, leader of the research team and a professor of physics and biology at MIT. "There is a random component to this. Molecules bounce around and find each other probabilistically. It doesn't work like clockwork."

In a study of intestinal development of C. elegans, a small worm, the team was able to pinpoint specific fluctuations that appear to determine whether the mutant trait is expressed or not.

The work, published in Nature on Feb. 18, may also be relevant to human diseases that display incomplete penetrance, such as Parkinson's disease and Type 1 diabetes, says van Oudenaarden. For example, knowing the specific points in cellular pathways that are most important in controlling a cell's response to mutation could give drug designers better targets for new therapies.

The team studied the embryonic development of the digestive tract of C. elegans. The tract starts out as a single cell and eventually becomes 20 cells in the adult worm. That process is initiated by a gene called skn-1, which activates a series of other genes. Most of those genes code for , which bind to DNA and turn on additional genes.

The team first characterized normal progression of intestine development, using a probe the team members developed that binds to messenger RNA inside cells, allowing them to count the number of copies of a particular messenger RNA sequence. (Messenger RNA carries DNA's instructions to the cell's protein-building machinery.)

They then studied worms with a mutation in skn-1, and found that some of the worms developed normal digestive tracts while others failed to develop a digestive tract. It appears that the controlling factor is the number of copies of mRNA produced by a gene called end-1, one of the genes activated by skn-1. The number of end-1 mRNA strands varied greatly in embryos with the mutation: In those with a number above a certain threshold, development proceeded normally; if the number was below the threshold, no developed.

It appears that evolution has produced networks of genes that smooth out the effects of those fluctuations, which are revealed only when there is a mutation in the pathway, says van Oudenaarden.
Van Oudenaarden plans to use the same technique to study mammalian colon stem cells, in hopes of figuring out whether random fluctuations in influence the that can cause cancer. If he can show that random fluctuations in a particular gene appear to be subject to the same threshold effect that he saw in C. elegans , it could give drug designers new targets.

More information: “Variability in gene expression underlies incomplete penetrance in multicellular development,” Arjun Raj, Scott Rifkin, Erik Andersen, Alexander van Oudenaarden. Nature, February 18, 2010.

Related Stories

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Feldagast
not rated yet Feb 17, 2010
I think there can be differences in the same enviroment, even though you and your family may eat at the same resterant and breath the same air, you may not order the same food. You may be sitting in the seat next to the window absorbing more ultraviolet radiation. Subtle differences may have some effect.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.