Could Printers Produce Human Tissue?

April 19, 2010 by Miranda Marquit, Medical Xpress weblog
Representation of how bioprinting technology lays down cell aggregates for the fabrication of human tissue. Credit: Organovo via CNET News.

(PhysOrg.com) -- Scientists are getting closer to be able to create human tissue using special 3D printers. Using patients' own cells, the start-up company Organovo would use adipose tissue or bone marrow to craft new tissue. The adipose tissue would come from patients' own body fat stores, or bone marrow might be used instead. With these cells providing information specific to the patients' bodies, it would then be possible to create new tissue to replace the old.

The technique is known as bioprinting, and it makes use of special 3D printers, attached to computers running bio-programs, to help fabricate small sections of human tissue. In the future, it might even be used to fabricate new blood vessels or even nerves. CNET News offers this information on the possible applications of bioprinted human tissue:

As of right now, the benefit for humans is still years away, perhaps as many as four, said Organovo CEO Keith Murphy. And when and if the company's technology gets certified and hits the market, it will probably have limited application: most likely, the technology could be used at first mainly for crafting very small areas of tissue or new blood vessels.

But even those limited applications could mean, for example, that doctors may eventually have the ability to intervene in cases where, for example, a patient has a blocked or damaged blood vessel, and potentially prevent what might otherwise result in a forced amputation. Similarly, someone with damaged nerves could have a gap in a nerve bridged using regenerated printed by Organovo's machine.

Even farther into the future, there are hopes that such a technique could actually be used to create new organs, such as a replacement or a . Of course, creating an entire organ in this manner will take time. The complexities involved in creating small swatches of human tissue in general are numerous. Creating an organ capable of full functionality would require even more complex processes and technology. One of the challenges is the necessity of being able to lay a vascular foundation that conducts life-giving blood to the tissue.

But, before the point of producing small tissue samples is even reached, one must figure out how to actually use a computer program and a bioprinter to build these small systems. CNET News describes the process by which bio-ink cells should create the required structure:

The key to the process is a fusion of the full cellular aggregate. Murphy explained that Organovo's 3D printers--which are built by the Australian firm Invetech, using Organovo's specifications--lay out a bio-ink made entirely of aggregates of cells, which within a period of about 24 hours of being prone, fuse together.

According to an Organovo white paper, "Cells attach to other cells, and cells produce collagen and attach to collagen. Cells know exactly how to behave once placed in the right orientation by the printer. They behave the same way they do in the body based on their inherent genetic programming."

Ultimately, the idea is that the printer pushes out fused cellular aggregates and lines them up "like balls in a paintball gun," Murphy said, and then deposits them very gently, according to a design that a doctor can define with a "very simple script."

Since the human tissue involved would be made with a patient's own cells as a blueprint, rejection of the new tissue would be less likely. One of the biggest problems with tissue transplant is rejection, in which the body attacks what it views as foreign. However, these bioprinted would most likely not be seen as foreign invaders, and could increase the rate of acceptance.

However, before any of this becomes a true reality, there are technological hurdles to overcome. But the idea is catching hold, and bioprinting may end up being helpful in the general search for better regenerative medicine.

More information: Daniel Terdiman, "Scientists edge closer to printing human tissue," CNET News (April 19, 2010). Available online: news.cnet.com/8301-13772_3-20002741-52.html

Related Stories

Recommended for you

Scientists reverse aging-associated skin wrinkles and hair loss in a mouse model

July 20, 2018
Wrinkled skin and hair loss are hallmarks of aging. What if they could be reversed?

Breakthrough could impact cancer, ageing and heart disease

July 20, 2018
A team of Sydney scientists has made a groundbreaking discovery in telomere biology, with implications for conditions ranging from cancer to ageing and heart disease. The research project was led by Dr. Tony Cesare, Head ...

Enzyme identified as possible novel drug target for sickle cell disease, Thalassemia

July 19, 2018
Medical researchers have identified a key signaling protein that regulates hemoglobin production in red blood cells, offering a possible target for a future innovative drug to treat sickle cell disease (SCD). Experiments ...

Mice given metabolite succinate found to lose weight by turning up the heat

July 19, 2018
A team of researchers with members from institutions across the U.S. and Canada has found that giving the metabolite succinate to mice fed a high-fat diet prevented obesity. In their paper published in the journal Nature, ...

Supplement may ease the pain of sickle cell disease

July 19, 2018
(HealthDay)—An FDA-approved supplement reduces episodes of severe pain in people with sickle cell disease, a new clinical trial shows.

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
not rated yet Apr 19, 2010
My bet is that opportunist companies will be offering to print penis extensions within a few years..(judging by the volume and valence of the spam we already receive).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.