Electrical activity in developing brain influences choice of neurotransmitter

July 28, 2010

Cascades of genetic signals determine which neurotransmitter a brain cell will ultimately use to communicate with other cells. Now a pair of reports from biologists at the University of California, San Diego, have shown for the first time that electrical activity in these developing neurons can alter their chemical fate—and change an animal's behavior—by tweaking this genetic program.

"When I was a graduate student we were taught that the transmitters that use were fixed and unchanging. It's now clear that the electrical activity of the nervous system that we use for rapid communication also has the effect of changing the transmitters that neurons make and use," said Nicholas Spitzer, a professor in the Division of Biological Sciences who leads the research group that made the discoveries. The studies, which looked at two different transmitter systems, will appear in the August issues of the journals Neuron and Nature Neuroscience.

Michaël Demarque, a post-doctoral fellow in Spitzer's lab, looked at the development of neurons in the hindbrain of the African clawed frog Xenopus laevis. By the time embryonic frogs have sprouted a tail bud, some of these neurons have already adopted the . Others have adopted different neurotransmitters. Although none of them are connected to other neurons, they generate periodic spikes of positively charged within the cell that last for seconds and occur a few times each hour.

By altering the frequency of those electrical signals, Demarque could change the number of neurons that used serotonin. Dampening the calcium spikes increased the number of neurons expressing a particular gene, Lmx1b, with two subsequent effects. More of the neurons in that part of the brain began to make serotonin, and the behavior of the tadpoles changed as well. When placed in a round dish and poked on the tail, tadpoles with more serotonin neurons swam fewer laps before settling down, Demarque and Spitzer report in Neuron.

"Our work illustrates how the environment in which development takes place could affect the maturation of the nervous system," Demarque said. Changes in serotonin function have been implicated in human disorders such as anxiety, depression and autism, highlighting the importance of understanding the developmental pathways that shape the system, the authors wrote.

Post-doctoral fellow Kurt Marek and graduate student Lisa Kurtz, also in Spitzer's lab, found a similar relationship between electrical activity and specification of neurotransmitter in a different neural system, and they were able to pin down the fine details of the molecular interaction, they report in .

In a different species of African clawed frog, Xenopus tropicalis, they looked at neurons in the embryonic spinal cord at a point in development when the choice is between a neurotransmitter that is excitatory, making the neurons it contacts more likely to fire an electrical impulse, or one that is inhibitory.

They found that influences development through a genetic switch called tlx3, which determines whether a cell will use the neurotransmitter glutamate, which is excitatory or GABA, which is inhibitory. They also identified a specific molecule that responds to calcium spikes by controlling the activity of the gene.

"We have a molecular pathway connecting calcium activity to a genetic switch that can completely reverse the polarity of the circuit," Marek said.

Both genetic factors and activity determine which the mature neuron will use, an interaction that likely allows the brain to assemble circuits appropriate to a variable environment, the authors wrote.

Related Stories

Recommended for you

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.