Exercise and caloric restriction rejuvenate synapses in lab mice

August 2, 2010 By Alvin Powell
A photo of older, more spread-out neuromuscular junctions. Younger ones generally form tighter circles.

(PhysOrg.com) -- Harvard University researchers have uncovered a mechanism through which caloric restriction and exercise delay some of the debilitating effects of aging by rejuvenating connections between nerves and the muscles that they control.

The research, conducted in the labs of Joshua Sanes and Jeff Lichtman and described this week in the journal , begins to explain prior findings that and restricted-calorie diets help to stave off the mental and physical degeneration of aging.

"Caloric restriction and exercise have numerous, dramatic effects on our mental acuity and motor ability," says Sanes, a professor of molecular and cellular biology and director of the Center for Brain Science at Harvard. "This research gives us a hint that the way these extremely powerful act is by attenuating or reversing the decline in our ."

Sanes says their research, conducted with mice genetically engineered so their nerve cells glow in fluorescent colors, shows some of the debilitation of aging is caused by deterioration of connections that nerves make with the muscles they control, structures called neuromuscular junctions. These microscopic links are remarkably similar to the synapses that connect neurons to form information-processing circuits in the brain.

In a healthy neuromuscular synapse, and their receptors on muscle fibers are almost a perfect match, like two hands placed together, finger to finger, palm to palm. This lineup ensures maximum efficiency in transmitting the nerve's signal from the brain to the muscle, which is what makes it contract during movement.

As people age, however, the neuromuscular synapses can deteriorate in several ways. Nerves can shrink, failing to cover the muscle's receptors completely. The resulting interference with transmission of nerve impulses to the muscles can result in wasting and eventually even death of . This muscle wasting, called sarcopenia, is a common and significant clinical problem in the elderly.

The new work showed that mice on a restricted-calorie diet largely avoid that age-related deterioration of their neuromuscular junctions, while those on a one-month exercise regimen when already elderly partially reverse the damage.

"With calorie restriction, we saw reversal of all aspects of the synapse disassembly. With exercise, we saw a reversal of most, but not all," Sanes says.

Because of the study's structure -- mice were on calorie-restricted diets for their whole lives, while those that exercised did so for just a month late in life -- Sanes cautions against drawing conclusions about the effectiveness of exercise versus calorie restriction. He notes that longer periods of exercise might have more profound effects, a possibility he and Lichtman are now testing.

Though much of Sanes and Lichtman's work focuses on brain synapses, both have investigated neuromuscular synapses for many years. Neuromuscular junctions are large enough to be viewed by light microscopy, and can be a jumping-off point for brain study, highlighting areas of inquiry and potential techniques.

"These findings in neuromuscular synapses make us curious to know whether similar effects might occur in brain synapses," Sanes says.

While the changes to the synapses through and exercise were clear in the images the researchers obtained, Sanes cautioned that their work was structural, not functional, and they have not yet tested how well the synapses worked.

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.