Research could improve detection of liver damage

September 17, 2010, University of Liverpool

Research at the University of Liverpool could lead to faster and more accurate diagnoses of liver damage.

The team used paracetamol as the basis for the study: research indicates that paracetamol can place temporary stress on the liver in around a third of people who take a normal dose (4g per day) but the liver returns to normal when the drug has left the system. Overdoses of the drug are a major cause of in both the UK and US.

Scientists have discovered that the presence of specific proteins in the blood are indicative of early liver cell damage and can determine the point at which cell death occurred, the type of cell death, and the extent of any damage. This could lead to being assessed faster and more accurately in the future - information which could prove valuable when treating people following drug overdoses.

The current blood test used by clinicians to assess simply indicates whether liver enzymes leaking from dying cells can be detected in the blood. The test is not always reliable because positive results are often, but not always, an indicator of serious underlying liver problems.

Scientists induced a mild paracetamol overdose in mice and discovered that proteins released by cells in the liver - HMGB1 and keratin 18 - provided a detailed picture of the level of cell damage. The release of HMGB1 was associated with necrosis - a process in which a cell bursts and dies - while the release of different types of keratin 18 was associated with both - a process of normal cell renewal - and necrosis. This latter combination of both types of is significantly less traumatic for the liver than alone in paracetamol overdose.

Pharmacologist, Dr Dominic Williams, from the University's Medical Research Council Centre for Drug Safety Science, said: "The findings are significant because knowing how the cells die will allow development of medicines to help them survive, and may also distinguish patients who have severe injury and require intensive care from those who have mild injury.

"The research has implications for determining how much stress has been placed on the liver in patients who are worried about an accidental overdose, as well as the more serious overdose cases."

More information: The research is published in Molecular Medicine.

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.