Research team fully maps human proteome

September 24, 2010 By Peter Rueegg, ETH Zurich
The big wide world of proteins: Systems biologists at ETH Zurich and the IBS have drawn a complete map of the human proteome. Image: e-pics/ETH Zurich

A Swiss research team from ETH Zurich, led by Professor Ruedi Aebersold, and from the Institute for Systems Biology, Seattle, has used mass spectroscopy methods to fully map the human proteome for the first time. The data is being made available to all researchers.

A number not to be forgotten by anyone intending to work with the human on the one hand, and henceforth with the human proteome on the other. The reason is that this is the number of proteins which researchers at the Institute for Systems Biology (IBS) in Seattle and at ETH Zurich from the group led by Professor Ruedi Aebersold have recorded and identified using various methods, and whose data they have entered into a database as a reference. The researchers describe this as the “Gold Standard Reference for the human proteome”.

“This reference database will now be made available to all biologists for further research,” said Ruedi Aebersold in an interview with ETH Life, “just as the human genome data from the ‘’ was published openly at that time for all interested experts.” The researchers are making their data accessible via the ISB/ETH SRMAtlas. This database is part of the PeptideAtlas developed by the two institutions over the past few years. The researchers have just announced this at the Ninth Annual World Conference of the Human Proteome Organization (HUPO) in Sydney.

Any samples are fully determinable

The proteome data enables researchers to determine the number and type of proteins in any kind of biological sample using various mass spectrometric measurements. This is an important development that will significantly improve the reliability and reproducibility of proteomics. The researchers hope it will greatly speed up fundamental and applied research.

Scientists working with Ruedi Aebersold at the Institute for Molecular at ETH Zurich and various representatives of the ISB, which Aebersold co-founded, took part in the project. The Proteome Atlas project was financed on the one hand by funds received by the ISB from the US National Health Institute, and on the other Ruedi Aebersold obtained an ERC Advanced Grant in Proteomics, amounting to 2.4 million Euro paid out over five years.

Interview with Ruedi Aebersold on decoding the human proteome:

Professor Ruedi Aebersold, is it correct to say that you now have spectra for every coded and expressed by the 20,300 human genes, thus enabling all the protein species present in a human cell at any given time to be identified using these spectra?

Ruedi Aebersold: Yes, that is correct. Biologists currently assume that the human genome has about 20,300 loci, i.e. gene locations, that code for proteins. Now we have actually succeeded in recording reference data for all the proteins encoded by these loci.

Many proteins are modified in the cell only afterwards, which increases the number of potential protein species even further. Do spectra also exist for such proteins?

Each of these loci can produce several different polypeptides with chemical modifications or by a process called “alternative splicing”. At present we cannot generally distinguish between the various forms of proteins produced by each locus. That is the next stage in our project, which is already underway.

How long did this mapping work take?

The actual measurements took about one year. Of course the development of the technology we used to generate this data, as well as the entire computer infrastructure including programming and building up the databases, took much longer: we have been working on it since 2003.

What were the biggest difficulties?

The greatest difficulty and challenge was to track down the rare protein species and to obtain their spectra. We overcame this difficulty by synthesising fragments of such proteins which we “predicted” by using a computer, and by carrying out the measurements on these synthetic products afterwards. These spectra now act as the “Gold Standard” for discovering the corresponding proteins in any kind of biological sample.

Initially the decoding of the human genome was celebrated as an important step, and the decoding of the human proteome has now taken place. What is the significance of this new achievement?

I think it is an important step. However, the project will gain its real significance through the extent to which scientists use the resources that have now been made available, and how useful these prove to be. What we have actually created is a “map” allowing other people to research the proteome much more efficiently in relation to their own studies. The difference compared to the genome project is that we have constructed not just a catalogue but a map that helps other researchers to navigate through the proteome in their studies.

What does the fact that we now know the human proteome mean for research?

Proteins control or catalyse all the processes in the human body. We now have the instruments to enable every research laboratory, with certain restrictions, to discover and quantify every human protein. This will bring about great changes in biology and medicine, since we can now reliably and reproducibly measure all the protein constituents of a biological system.

Related Stories

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 24, 2010
But we can not say that human genome has 20,300 genes because there are a lot of genes in human genome that do not code for a proteins, right?

This article (http://www.physor...40.html) mentioned that there are thousands of such genes. Wikipedia states: "Non-coding RNA genes include highly abundant and functionally important RNAs such as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as RNAs such as snoRNAs, microRNAs, siRNAs and piRNAs and the long ncRNAs"

Do we know how many of these genes are there? So is the overall number of genes more like 25,000, a figure often mentioned?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.