The brain's journey from early Internet to modern-day fiber optics -- all in one lifetime

October 27, 2010

The brain's inner network becomes increasingly more efficient as humans mature. Now, for the first time without invasive measures, a joint study from the Ecole Polytechnique Federale de Lausanne (EPFL) and the University of Lausanne (UNIL), in collaboration with Harvard Medical School, has verified these gains with a powerful new computer program. Reported in the PNAS early online edition last week, the soon-to-be-released software allows for individualized maps of vital brain connectivity that could aide in epilepsy and schizophrenia research.

"The brings together a series of processes in a 'pipeline' beginning with individual MRIs and ending with a personalized map of the fiber optics-like network in the brain. It takes a whole team of engineers, mathematicians, physicists, and medical doctors to come up with this type of neurobiological understanding," explains Jean-Philippe Thiran, an EPFL professor and head of the Laboratory 5.

A young child's brain is similar to the early Internet with isolated, poorly linked hubs and inefficient connections, say the researchers from EPFL and UNIL. An adult brain, on the other hand, is more like a modern day, fully integrated fiber optic network. The scientists hypothesized that while the brain does not undergo significant topographical changes in childhood, its —the bundles of nerve cells connecting different parts of the brain—transitions from weak and inefficient connections to powerful neuronal highways. To test their idea, the team worked with colleagues at Harvard Medical School and Indiana University to map the brains of 30 children between the ages of two and 18.

Researchers at EPFL Signal Processing Laboratory 5 in collaboration with the University of Lausanne and partners in the US have studied how the brain makes connections between its different parts. Credit: EPFL - http://www.youtube.com/epflnews

With MRI, they tracked the diffusion of water in the brain and, in turn, the fibers that carry this water. Thiran and UNIL professor Patric Hagmann, in the Department of Radiology, then created a database of the various fiber cross-sections and graphed the results. In the end, they had a 3D model of each brain showing the thousands of strands that connect different regions.

These individual models provide insight not only into how a child's brain develops but also into the structural differences in the brain between left-handed and right-handed people, for example, or between a control and someone with or epilepsy. The models may also help inform surgeons of where, or where not, to cut to relieve epilepsy symptoms. Thiran and Hagmann plan to make the tool available early next year free of charge to hospitals around the world.

Related Stories

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.